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Abstract

Datasets with an excessive number of zeros are fairly common in several
disciplines. The aim of this paper is to improve the predictive power of hybrid
Bayesian network classifiers when some of the explanatory variables show a
high concentration of values at zero. We develop a new hybrid Bayesian
network classifier called zero-inflated tree augmented naive Bayes (Zi-TAN)
and compare it with the already known tree augmented naive bayes (TAN)
model. The comparison is carried out through a case study involving the
prediction of the probability of presence of two species, the fire salamander
(Salamandra salamandra) and the Spanish Imperial Eagle (Aquila adalberti),
in Andalusia, Spain. The experimental results suggest that modeling the
explanatory variables containing many zeros following our proposal boosts
the performance of the classifier, as far as species distribution modeling is
concerned.
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Software availability

The algorithms introduced in this paper have been implemented within
the Elvira environment for probabilistic graphical models (Elvira Consor-
tium, 2002), which is a free open source software programmed in Java. The
software, including the necessary scripts for replicating the experiments re-
ported in this paper, can be downloaded from the website
http://www.ual.es/personal/amg457/downloads

where the datasets used in the paper are also available for download. Both
the software and the data are contained in a single zip file, which includes
README files with the necessary instructions. The size of the zip file is 6.5
MB.

The software has been compiled with Oracle JavaTM SE version 1.8.0 45
build 14. It is ready to work in Windows, Mac and Linux platforms. The
datasets provided are in dbc format, which is a plain text format used by the
Elvira software, which provides facilities for exporting it to csv format.

1. Introduction1

Environmental datasets tend to present a number of problems, which2

must be detected and solved in order to obtain plausible results (Ancelet3

et al., 2010; Lecomte et al., 2013). One of these problems is the presence4

of data with highly skewed frequency distributions containing an excessive5

number of zeros. As a consequence, the data do not follow a standard distri-6

bution and the application of the usual analysis techniques may yield inac-7

curate parameter estimates and misleading inferences (Martin et al., 2005).8

Examples of data with many zeros often occur in different fields, including9

environmental sciences (Potts and Elith, 2006; Kamarianakis et al., 2008;10

Dorevitch et al., 2011), ecology (Damgaard, 2008; Wenger and Freeman,11

2008; Calama et al., 2011), epidemiology (Böhning et al., 1999; Ngatchou-12

Wandji and Paris, 2011), genetics (Varona and Sorensen, 2010), biochemistry13

(Nie et al., 2006; McDavid et al., 2013) or economy (Edmeades and Smale,14

2006; Solé-Auró et al., 2012).15

The algorithms developed to deal with zero excess are typically focused16

on the dependent variable. The most popular models are usually extensions17

of the Generalized Linear Models, comprising zero-inflated Binomial (ZIB)18

model (Hall, 2000) for binary variables; zero-inflated Poisson (ZIP) (Lam-19

bert, 1992), zero-inflated Negative Binomial (ZINB) (Greene, 1994), Poisson20
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hurdle and Negative Binomial hurdle (Cragg, 1971; Mullahy, 1986) for dis-21

crete variables; and delta models or compound Poisson process for continuous22

variables (Ancelet et al., 2010; Lecomte et al., 2013). Generalizing, these23

models are combinations of probability distributions which separately model24

the occurrence of zeros and the rest of the domain of the variable of interest.25

These models are appropriate for handling response variables with high con-26

centration of zeros and have been shown to outperform methodologies that27

assume the dependent variable to have a standard distribution (Martin et al.,28

2005).29

However, the distribution of the explanatory variables has not typically30

been of concern and therefore methodologies for dealing with explanatory31

variables containing high concentration of zeros have not been studied so far.32

Notwithstanding, accurately modeling the distribution of the explanatory33

variables is crucial in models such as Bayesian network classifiers, that have34

been successfully utilized in species distribution analysis (Aguilera et al.,35

2010). Unfortunately, the methods described above for handling zero excess36

are not directly applicable to Bayesian network classifiers because they are37

not designed for modeling conditional distributions and in the case of con-38

tinuous variables, they rely on distributions that are not compatible with39

Bayesian network algorithms, as is the case of the Gamma distribution.40

Bayesian networks (BNs) belong to the so-called probabilistic graphical41

models and roughly speaking they are compact representations of joint prob-42

ability distribution over a set of variables whose independence relations are43

encoded by the structure of an underlying directed acyclic graph (Pearl,44

1988). When a BN hosts discrete and continuous variables simultaneously,45

it is called a hybrid BN. However, not every kind of distribution is compati-46

ble with the factorization encoded in a hybrid Bayesian network. One of the47

most flexible models is based on the use of mixtures of truncated exponentials48

(MTEs), introduced by Moral et al. (2001), generalized later by Shenoy and49

West (2011) and Langseth et al. (2012).50

A hybrid BN classifier is just a BN where one of the variables is the51

class (which is discrete) while the others (discrete or continuous) are the52

explanatory variables, also called features (Aguilera et al., 2011). Typically,53

when facing classification problems only restricted network structures are54

considered, such as naive Bayes (NB) or tree augmented naive Bayes (TAN)55

(Friedman et al., 1997). The NB model assumes that the explanatory vari-56

ables are independent of each other given the class variable, while the TAN57

model relaxes that assumption by allowing some dependencies among the58
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features. Within the Environmental Sciences area, the NB model appears59

to be more popular (Markus et al., 2010; Aguilera et al., 2013; Fytilis and60

Rizzo, 2013; Ropero et al., 2014, 2015) than the TAN model (Aguilera et al.,61

2010; Maldonado et al., 2015).62

In this paper we address the problem of having a high concentration of63

zeros in explanatory variables of hybrid BN classifiers. More precisely, we64

introduce a new model called zero-inflated TAN (Zi-TAN) that extends the65

hybrid BN classifier proposed by Aguilera et al. (2010) by explicitly modeling66

the zero values. We show how the new model outperforms the formerly used67

hybrid BN classifier in a case study related to Species Distribution Models68

(SDM). In the case study, environmental variables are used as explanatory69

variables of the species occurrence, including climate, land use, soil and lithol-70

ogy. Depending on the scale, these variables may contain a large proportion71

of zeros which justifies the development of the new model.72

The remainder of the paper is organized as follows. We describe Bayesian73

network classifiers and our baseline model, the TAN, in Section 2. Section 3 is74

devoted to the methodological aspects of our new proposal. The performance75

of the new model is analyzed in a case study involving two species in Section 4.76

The paper ends with conclusions in Section 5.77

2. Bayesian networks for classification78

A Bayesian network (BN) is a statistical multivariate model for a set of79

variables X = {X1, . . . , Xn}, which is defined in terms of two components:80

• Qualitative component: A directed acyclic graph (DAG) where each81

vertex represents one of the variables in the model, and so that the82

presence of an edge linking two variables indicates the existence of83

statistical dependence between them.84

• Quantitative component: A conditional distribution p(xi|pa(xi)) for85

each variable Xi, i = 1, . . . , n given its parents in the graph, denoted86

as pa(Xi).87

The joint distribution of the variables in the network is therefore repre-88

sented in a factorized way as89

p(x1, . . . , xn) =
n∏
i=1

p(xi|pa(xi)) ∀x1, . . . , xn ∈ ΩX1,...,Xn (1)
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where ΩXi
represents the set of all possible values of variable xi and pa(xi)90

denotes an instantiation of the parents of Xi.91

Hybrid BNs can handle both discrete and continuous data without impos-92

ing restrictions on the interactions among the variables thanks to the devel-93

opment of models such as the Mixtures of Truncated Exponentials (MTEs)94

developed by Moral et al. (2001). The MTE model is characterized by a95

function defined as follows.96

Definition 1. (MTE potential) Let X be a mixed n-dimensional random97

vector. Let W = (W1, . . . ,Wd) and Z = (Z1, . . . , Zc) be the discrete and98

continuous parts of X, respectively, with c + d = n. We say that a function99

f : ΩX 7→ R+
0 is a Mixture of Truncated Exponentials potential (MTE100

potential) if for each fixed value w ∈ ΩW of the discrete variables W, the101

potential over the continuous variables Z is defined as:102

f(z) = a0 +
m∑
i=1

ai exp

{
c∑
j=1

b
(j)
i zj

}
(2)

for all z ∈ ΩZ, where ai, i = 0, . . . ,m and b
(j)
i , i = 1, . . . ,m, j = 1, . . . , c are103

real numbers. We also say that f is an MTE potential if there is a partition104

D1, . . . , Dk of ΩZ into hypercubes and in each Di, f is defined as in Eq. (2).105

An MTE function is an MTE density if it integrates to 1. A conditional106

MTE density can be specified by dividing the domain of the conditioning107

variables and giving an MTE density of the conditioned variable for each108

configuration of splits of the other variables. The more the intervals used to109

divide the domain of the continuous variables, the better the MTE model110

accuracy but in exchange of a higher number of parameters. To estimate the111

parameters of MTE densities, we followed the approach recently introduced112

by Langseth et al. (2014), which is based on least squares optimization, but113

limiting the number of exponential terms to 2, i.e., m = 2 in Eq. (2), in order114

to keep the complexity of the models moderate.115

Hybrid BNs can also be modeled by discretizing the continuous variables,116

so that all the existing methodology for discrete BNs can be applied with117

no further modification. The most prominent proposal in this direction is118

the so-called dynamic discretization (Neil et al., 2007) which seeks for better119

representations of high density areas throughout the inference process. The120

problem with discretization is to balance the desire for high accuracy in the121

approximations with a reasonable complexity of the resulting models. A122
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study of the complexity of the MTE approach versus discretization can be123

found in (Rumı́ and Salmerón, 2007; Langseth et al., 2009).124

Figure 1: Plot of a standard normal density (dashed blue line) overlaid on an approxima-
tion using MTEs (solid red line) and dynamic discretization (solid black line).

As an illustration of the potential advantages of the MTE approach versus125

dynamic discretization, consider the problem of approximating a standard126

normal density using both approaches. An approximation using MTEs is127

given by Cobb et al. (2006) as128

f(x) =


−0.017203 + 0.9309604e1.27x if − 3 ≤ x < −1,

0.442208− 0.038452e−1.64x if − 1 ≤ x < 0,

0.442208− 0.038452e1.64x if 0 ≤ x < 1,

−0.017203 + 0.9309604e−1.27x if 1 ≤ x < 3,

(3)

An approximation of the standard normal density using dynamic dis-129

cretization can be obtained using the AgenaRisk software.1 Figure 1 shows130

both approximations overlaid on the plot of the standard normal density be-131

tween -3 and 3. The plot illustrates how using MTEs the approximation is132

1http://www.agenarisk.com
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smooth while the discretized version is a staircase function. Hence, it is pos-133

sible to obtain more accurate approximations using fewer parameters with134

MTEs in general. In this case, the MTE approximation in Equation (3) has135

12 parameters while the discretized approximation provided by AgenaRisk136

has 50 parameters. We have also computed the mean absolute error of both137

approximations, obtaining a value of 0.0045 for the MTE model and 0.0055138

for the discretized one.139

Hence, the potential benefits of using MTEs instead of discretized models140

are: (i) they provide, in general, more accurate approximations using fewer141

parameters, which leads to more compact models that require fewer parame-142

ters to be estimated from data, (ii) they can easily represent variables whose143

nature is not discrete nor continuous, as we will discuss in Section 3. Fur-144

thermore, a discretized model can be seen as a particular case of an MTE145

where only parameter a0 in Equation (2) is different from 0.146

A Bayesian network can be used as a classifier if it contains a class variable147

C and a set of continuous or discrete explanatory variables X1, . . . , Xn, where148

an object with observed features x1, . . . , xn will be classified as belonging to149

class c∗ ∈ ΩC obtained as150

c∗ = arg max
c∈ΩC

p(c|x1, . . . , xn),

where ΩC denotes the set of all posible values of C.151

Considering that p(c|x1, . . . , xn) is proportional to p(c)× p(x1, . . . , xn|c),152

the specification of an n dimensional distribution for X1, . . . , Xn given C is153

required in order to solve the classification problem, which implies a consid-154

erable computational cost, as the number of parameters necessary to specify155

a joint distribution is exponential in the number of variables, in the worst156

case. However, this problem is simplified if we take advantage of the factor-157

ization encoded by the BN. Since building a network without any structural158

restriction is not always feasible (they might be as complex as the above159

mentioned joint distribution), networks with fixed or restricted and simple160

structures are utilized instead when facing classification tasks. The extreme161

case is the naive Bayes (NB) structure, where all the feature variables are162

considered independent given C, as depicted in Fig. 2(a). The strong as-163

sumption of independence behind NB models is somewhat compensated by164

the reduction in the number of parameters to be estimated from data, since165

in this case, it holds that166
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p(c|x1, . . . , xn) ∝ p(c)
n∏
i=1

p(xi|c) , (4)

which means that, instead of one n-dimensional conditional density, n one-167

dimensional conditional densities must be estimated.168

In TAN models, more dependencies are allowed, expanding the NB struc-169

ture by permitting each feature to have one more parent besides C. It is170

illustrated in Fig. 2(b). The increase in complexity, in both the structure171

and the number of parameters, results in richer and more accurate models in172

general (Friedman et al., 1997).173

C

X2X1
... Xn

(a)

C

X2X1 X3 X4

(b)

Figure 2: Structure of naive Bayes (a) and TAN (b) classifiers.

In general, there are several possible TAN structures for a given set of174

variables. The way to choose among them is to construct a maximum weight175

spanning tree containing the features, where the weight of each edge is the176

mutual information between the linked variables, conditional on the class177

(Friedman et al., 1997; Fernández et al., 2007). The mutual information178

between features Xi and Xj given the class is defined as179

I(Xi, Xj|C) =
∑
xi,xj ,c

log
p(xi, xj|c)

p(xi|c)p(xj|c)
. (5)

The details for constructing a TAN classifier model are given in Algorithm 1.180

3. Zero-inflated TAN based on mixtures of truncated exponentials181

In environmental datasets, it is common to find variables with a high con-182

centration of observations at a single repeated value. This makes the mod-183

eling of the probability distribution for such variables a problematic task.184

As an example, consider the histogram on the left panel of Fig. 3. It repre-185

sents the distribution of eutric regosols, used in the case study in Section 4,186
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Algorithm 1: TAN classifier
Input: A dataset D with variables X1, . . . , Xn, C.
Output: A TAN classifier with root variable C and features X1, . . . , Xn.

1 Calculate the conditional mutual information I(xi, xj |c) between each pair
of attributes, i 6=j.

2 Construct a complete undirected graph with nodes X1, . . . , Xn and label
each link connecting Xi to Xj by I(xi, xj |c).

3 Build a maximum weighted spanning tree T .
4 Transform T into a directed tree by choosing a root variable, C, and setting

the direction of every link to be outward from it.
5 Construct a new network G, with node C being connected to each Xi and

nodes X1, . . . , Xn having the same links as in T .
6 Estimate an MTE density for C, and a conditional MTE density for each
Xi, i = 1, . . . , n given its parents in G.

7 Let P be a set of estimated densities.
8 Let TAN be a Bayesian network with structure G and distribution P .

9 return TAN .

including values equal to zero, which represent 667 out of 887 values. The187

distribution is so concentrated at zero that the histogram provides no valu-188

able information for values above zero. By excluding the zero values, the189

resulting histogram is represented on the right panel of Fig. 3. It is apparent190

that the distribution of the values greater than zero is far from being uni-191

form, and therefore modeling it accurately can provide benefits in prediction192

tasks.193

Actually, the situation described above is somehow motivated by the fact194

that the variable is not really discrete nor continuous. Instead, one can195

consider that there is some probability mass allocated at 0, and the rest of196

the probability mass is described by a density function. Formally, a variable197

that is not discrete nor continuous is called a mixed variable in Statistics.198

More precisely, a random variable is mixed if its distribution function has199

discontinuity jumps at a countable number of points, and it is continuously200

increasing at least in one interval of values of the variable.201

As an example, let g(x) ≥ 0 for 0 < x ≤ 1 be any non-negative real202

function such that
∫ 1

0
g(x)dx = 1 − p, with 0 < p < 1. Then, a random203

variable X with density function204

9



(a) (b)

Figure 3: Histogram for the proportion of eutric regosols including (a) and excluding (b)
values equal to zero.

f(x) =

{
p if X = 0

g(x) if 0 < x ≤ 1,
(6)

is a mixed random variable.205

Considering the variable represented in Fig. 3, p would correspond to the206

fraction of observations allocated at 0 (i.e. the leftmost bar in the left panel),207

while g(x) would correspond to the rest of the histogram or, equivalently, to208

the histogram on the right panel of the figure, which can be considered as the209

result of zooming in the initial histogram for the values of X strictly greater210

than 0. From now on, we will say that a mixed random variable whose density211

can be written as in Eq. (6) is a zero-inflated random variable. Note that we212

are considering, without loss of generality, that zero-inflated variables take213

values on [0, 1]. Variables with a different support can be re-scaled.214

Zero-inflated random variables have not previously been considered in215

hybrid Bayesian network literature in general, nor in MTEs in particular.216

However, they can be easily accommodated within MTE models by incorpo-217

rating artificial variables. More precisely, our proposal consists in including218

an artificial variable X∗ for each mixed variable X in the network, where X∗219

has no parents and X is its only child. The artificial variable is defined as220

follows:221

X∗ =

{
0 if X = 0

1 otherwise ,
(7)
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and its probability function is222

f(x∗) = P (X∗ = x∗) =

{
p if x∗ = 0

1− p if x∗ = 1,
(8)

where p is as in Eq. (6). Note that f(x∗) is trivially an MTE, according to223

Eq. (2).224

The conditional distribution of X given X∗ is225

f(x|x∗) =

1 if x∗ = 0, x = 0
1

1− p
g(x) if x∗ = 1, 0 < x ≤ 1,

(9)

with p and g(x) as in Eq. (6). Again, f(x|x∗) is an MTE whenever g(x)226

is an MTE as well. Note that so far we have made no assumptions about227

g(x) beyond those required for the corresponding density function being well228

defined - see Eq. (6). We will see later in Definition 2 that g(x) plays the229

role of the conditional MTE distributions in a TAN classifier. The following230

proposition states that the introduction of artificial variables does not modify231

the marginal distribution of the zero-inflated variable.232

Proposition 1. Let X∗ be a binary random variable with probability function233

as in Eq. (8) and let X be a random variable whose distribution conditional234

on X∗ is as given in Eq. (9). Then, X is a zero-inflated random variable235

with marginal distribution as in Eq. (6).236

Proof. The joint distribution of X and X∗ is f(x, x∗) = f(x|x∗)f(x∗), which
can be written as

f(x, x∗) =

p× 1 if x = 0, x∗ = 0
1

1− p
g(x)× (1− p) if 0 < x ≤ 1, x∗ = 1

which amounts to

f(x, x∗) =

{
p if x = 0, x∗ = 0

g(x) if 0 < x ≤ 1, x∗ = 1.

Therefore, the marginal distribution for X is obtained by marginalizing out237

X∗ as follows:238

f(x) =
1∑

x∗=0

f(x, x∗) =

{
p if x = 0

g(x) if 0 < x ≤ 1,

11



which matches Eq. (6).239

Our methodological proposal consists of including zero-inflated random240

variables in TAN classifiers, resulting in a new Bayesian network classifier241

formally defined as follows.242

Definition 2. Let T be a TAN classifier over class variable C and features243

X1, . . . , Xn. Let Xi, i ∈ I ⊂ {1, . . . , n} be a set of zero-inflated random244

variables. A zero-inflated TAN (Zi-TAN) classifier T ∗ is obtained from T245

by:246

1. Inserting, for each variable Xi, i ∈ I, an artificial variable X∗i as in247

Eq. (7) and a link X∗i → Xi.248

2. Attaching to each node X∗i , i ∈ I a distribution as in Eq. (8).249

3. Attaching to each node Xi, i ∈ I with parents {Y1, . . . , Ym} in T , and250

conditional distribution f(xi|y1, . . . , ym) in T , a new conditional distri-251

bution252

f(xi|x∗i , y1, . . . , ym) =

1 if x∗i = 0, xi = 0
1

1− p
g(xi|y1, . . . , ym) if x∗i = 1, 0 < xi ≤ 1,

(10)
where p is the proportion of values of Xi equal to 0 and g(xi|y1, . . . , ym)253

is a conditional MTE density for Xi given {Y1, . . . , Ym} learnt from the254

same sample as f(xi|y1, . . . , ym) but excluding the values where Xi = 0.255

Notice that the new conditional distributions defined in Eq. (10) are of256

class MTE as long as the distributions in the original TAN model are MTEs257

as well. Also, the role of g(xi|y1, . . . , ym) corresponds to that of g(x) in258

Eq.(6). Such conditional distributions are learnt making use of the procedure259

introduced by Langseth et al. (2014).260

Example 1. Consider the TAN structure in Figure 2(b). Assume that X1261

and X4 are zero-inflated random variables. The corresponding Zi-TAN struc-262

ture, according to Definition 2, is shown in Figure 4.263

The insertion of the artificial variables when constructing the Zi-TAN264

means that the new model can be factorized as a sum of TAN models, one265

per each combination of values of the artificial variables. However, from a266

practical point of view it is not a problem, as the joint distribution over the267

12



C

X2X1 X3 X4

X∗1 X∗4

Figure 4: An example of a Zi-TAN classifier structure, obtained from Figure 2(b) assuming
that X1 and X4 are zero-inflated random variables. X∗

1 and X∗
4 are their respective

artificial variables.

class variables and the features is not affected, as shown in Proposition 2.268

Recall that the aim of the Zi-TAN model is not to modify the underlying269

distribution over the variables in the domain being analyzed, but rather to270

express it in a way that permits overcoming the problem of high concentration271

of values at zero.272

Proposition 2. Let T be a TAN classifier over class variable C and fea-273

tures X1, . . . , Xn, and T ∗ be a Zi-TAN classifier constructed as in Defini-274

tion 2. Then, T ∗ encodes the same probability distribution as T over vari-275

ables {C,X1, . . . , Xn}.276

Proof. According to Proposition 1, marginalizing out each artificial variable277

X∗i in T ∗ yields a conditional distribution for Xi exactly equal to the one it278

had in T . Therefore, after removing all the artificial variables in T ∗, both279

models become the same.280

The details on how to build a Zi-TAN classifier from data are given in281

Algorithm 2. It relies on Definition 2 and Algorithm 1.282

4. Case study283

In this section, the methodology explained above is applied to SDMs.284

More precisely, we considered two case studies involving the Fire Salamander285

and the Spanish Imperial Eagle.286

4.1. Study area287

The study area is Andalusia, a region in southern Spain which occupies288

an area of 87 000 km2 and whose latitude and longitude is between 36◦N -289

38◦44’N and 3◦50’W - 0◦34’E. As far as elevation is concerned, the study area290

ranges from 0 to 3460 meters above the sea level. The main mountain ranges291

13



Algorithm 2: Zi-TAN classifier
Input: A dataset D with variables X1, . . . , Xn, C. A set of indices

I ⊂ {1, . . . , n} of zero-inflated variables.
Output: A Zi-TAN classifier with root variable C and features

{X1, . . . , Xn} ∪ {Xi|i ∈ I}.
1 Build a TAN model, T , from dataset D, for variables X1, . . . , Xn, C using

Algorithm 1.
2 T ∗ ← T .
3 for i ∈ I do
4 Create a new binary variable

X∗i =

{
0 if Xi = 0

1 otherwise .

5 Add a new column to dataset D, corresponding to X∗i
6 Insert a new link X∗i → Xi in T ∗.
7 Let p be the proportion of values X∗i = 0 in D.
8 Attach to X∗i in T ∗ the distribution

f(x∗i ) =

{
p if x∗i = 0

1− p if x∗i = 1,

9 Let {Y1, . . . , Ym} be the parents of Xi in T .
10 Let f(xi|y1, . . . , ym) be the conditional distribution of Xi given its

parents in T .
11 Estimate a new density g(xi|y1, . . . , ym) from the same data used to

learn f(xi|y1, . . . , ym), but excluding the elements in the sample where
Xi = 0.

12 Attach to Xi in T ∗ a new conditional distribution

f(xi|x∗i , y1, . . . , ym) =

1 if x∗i = 0, xi = 0
1

1− p
g(xi|y1, . . . , ym) if x∗i = 1, 0 < xi ≤ 1,

13 return T ∗.

14



of Andalusia are the Sierra Morena mountain range (in the North) and the292

Baetic systems (in the South), which are separated by the Baetic depression,293

the lowest territory in Andalusia (Figure 5). The flattest areas correspond to294

the littoral and the Baetic depression, through which the Guadalquivir river295

runs, and the steepest ones to the Baetic Systems, comprising the Prebaetic,296

Subbaetic and Pennibaetic systems.297

The geographic location determines Andalusia’s climate, which belongs298

to the Mediterranean domain. The Mediterranean climate alternates mild,299

rainy and humid winters with dry and warm summers. The average annual300

temperature usually does not drop below 15◦C, as a consequence of the ocean301

influence. On the other hand, precipitation (P) shows a high spatial vari-302

ability, ranging from 170 mm/year to 2180 mm/year. In addition, potential303

evapotranspiration (PET) ranges from about 300 mm in the eastern Baetic304

systems to more than 1000 mm/year in both the Guadalquivir river area and305

the eastern coast. As a result, the quotient of precipitation divided by PET,306

i.e. the humidity index, varies along the study area from surplus or areas307

with hydric excess (P > PET) to deficit or areas lacking in water resources308

(P < PET).309

Regarding land use, half of the study area corresponds to natural vegeta-310

tion, followed by croplands (44%), urbanized areas (3%) and bodies of water311

(3%). With reference to soil classification, cambisols are the most common312

soil group (41%), followed by regosols (19%), vertisols (9%), litosols (8.2%),313

luvisols (8.15%), fluvisols (5.5%), planosols (2.5%), xerosols (2%), solonchaks314

(2%), arenosols (1%), dunes (0.12%) and histosols (0.01%). On the subject315

of lithology, 64% of the Andalusia’s crust consists of sedimentary rocks, fol-316

lowed by metamorphic rocks (26%), plutonic rocks (6%) and volcanic rocks317

(4%).318

4.2. Data description319

Data from different thematic maps (Table 1) were incorporated into a320

geographic information system - ArcGis (ESRI R© ArcMapTM10.2.2). A 10321

x 10 km grid with presence records of different species was superimposed322

on the thematic maps in order to build a matrix composed of a number of323

explanatory variables and 1 target variable. The coordinate system for all324

the datasets is based on the European Terrestrial Reference System 1989325

(ETRS89).326

The percentage of each land use, soil and lithology variable within each327

cell was calculated by dividing the area of each variable by the total cell328
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Figure 5: Study area, Andalusia, Spain (37 ◦23’00”N 5 ◦59’00”W).

area. In addition, the average of annual mean temperature, annual rainfall,329

annual PET and annual humidity index were calculated for the 30 year period330

1971-2000 for each cell in the grid. Moreover, the average elevation, slope331

and aspect of each cell was calculated from the Andalusian Digital Terrain332

Model (DTM). The average elevation and slope in each cell were determined333

by means of their arithmetic means. Since aspect is measured clockwise from334

0 to 360 degrees from the north, describing a full circle, its average (Ā) was335

calculated as in Davis (1986)336

Ā = arctan


n∑
i=1

sin θi

n∑
i=1

cos θi

 , (11)

where θi is the aspect angle in each DTM pixel and n is the number of pixels.337

Once the value of each variable was calculated for the 10 x 10 km grid,338

16



those cells occupied by less than 50% of terrestrial surface were removed.339

Afterwards, a matrix composed of 156 variables taking values over 887 cells340

was obtained, where the class variable is the presence of a particular species341

and the remaining 155 variables are the explanatory variables (Table 1).342

Finally, the data were rescaled to interval [0,1] in order to prevent numerical343

instability problems.344

We have considered an explanatory variable to be zero-inflated if more345

than 50% of its observations are zeros. In this regard, 128 explanatory vari-346

ables out of 155 came out to be zero-inflated. In order to test the zero-inflated347

TAN (Zi-TAN) classifier, 2 species were chosen: 1) the Fire Salamander348

(Salamandra salamandra; from now on referred to as salamander), which is349

present in 300 out of 887 cells; therefore it was neither too present nor too350

absent; and 2) the Spanish Imperial Eagle (Aquila adalberti ; from now on351

referred to as eagle), whose presence in the study area is imbalanced and352

scarce, occurring in 54 out of 887 cells. Therefore, the 2 species are different353

from the point of view of occurrence.354

4.3. Variable selection355

An excessive number of variables may decrease both the generalization356

of the model by overfitting and its performance by introducing noise. Since357

the dataset contained a high number of variables, a variable selection process358

was carried out. For both species, the selection process was entirely carried359

out by experts.360

In the case of salamander, since the species prefers dark moist areas, with361

rainfall being abundant, and is widely found in the Mediterranean forest at362

medium-high elevations (Degani and Warburg, 1978), the selected variables363

were rainfall, humidity index, dense oak woodlands, oak woodlands with364

shrub, oak woodlands with herbaceous crops, woodlands with herbaceous365

crops, grassland, olive groves, eutric regosols, calcaric regosols, eutric cam-366

bisols, sand-silt-clay-gravel lithology type, slate-greywacke-sandstone lithol-367

ogy type and volcano-sedimentary complex lithology type. Within this se-368

lection, 7 out of 14 were zero-inflated explanatory variables.369

Regarding eagle, the 3 main populations in Andalusia differ in terms370

of environmental conditions, ranging from the mediterranean forest to low-371

lying marshes near the ocean (González et al., 2008). Therefore, the selected372

variables were temperature, rainfall, evapotranspiration, rainfed herbaceous373

crops, oak woodlands with shrub, oak woodlands with herbaceous crops,374
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marshes, eutric regosols, albic arenosols, solonchaks, eutric cambisols, slate-375

shale-greywacke-quartzite lithology type, slate-greywacke-sandstone lithol-376

ogy type, sand lithology type and silt-clay lithology type. Within this selec-377

tion, 10 out of 15 were zero-inflated explanatory variables.378

4.4. Learning species distribution models379

Once the variables were selected, we used Algorithm 1 for learning the380

TAN model and Algorithm 2 for learning the Zi-TAN model.381

A powerful advantage of Bayesian networks is their capability of predict-382

ing a full specification of the posterior distribution of the class variable. In383

the case of species distribution modeling, we are interested in determining384

the probability of occurrence of a particular species, rather than giving a385

fixed binary prediction.386

The classifiers described in Sections 2 and 3 can be used to depict the387

potential distribution area, defined as the probability of presence of the species388

in each 10x10 km cell given the explanatory variables (X1, . . . , Xn) included389

in the model. Each cell in the map can be colored across a gradual white to390

red color ramp, where low probability of presence (0-0.2) is represented with391

the white color and high probabilities (0.8-1) with dark red.392

We have distinguished two learning scenarios, one for validation (see sec-393

tion 4.5) and the other for plotting the species distribution maps described394

above. The models used to plot the maps were learnt from a random subsam-395

ple containing an 80% of the original dataset, aiming at avoiding overfitting.396

4.5. Model validation397

The models were validated by means of the k -fold cross validation tech-398

nique (Stone, 1974), obtaining a confusion matrix in each fold. This technique399

randomly splits the complete dataset into k subsets, using k-1 of them for400

learning the model and one for validation. The method is repeated k times401

and the confusion matrix of the model is computed in each step. In order402

to compute a confusion matrix, the output of the model, given in terms of403

“probability of presence of the species”, PS, was transformed into absence404

and presence records, coded as “1” if PS ≥ 0.5 or “0” if PS < 0.5 respectively.405

In this case study, a k value of 10 was applied and therefore 10 confusion406

matrices of each model were obtained.407

A number of statistics were computed from the confusion matrices.408

Their definition is given in Table 2. Of special interest is the area under409

the ROC curve (AUC), which measures the predictive power of the model410
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considering both the true positive (Recall) and the true negative (Specificity)411

rates. When AUC is defined by only 1 run, it is known as balanced accuracy412

(Sokolova et al., 2006).413

The models were validated in terms of Accuracy, Recall, f − score and414

AUC. Precision and Specificity are also defined in Table 2 because they are415

used in the definition of the four selected statistics. All of them measure416

some aspect of the performance of the model and range from 0 to 1, with417

models scoring close to 1 being better. In the case of AUC, a score of 0.5418

represents a predictive power no better than predicting the class at random.419

Wilcoxon’s signed rank Test was performed to detect differences between the420

performance statistics of TAN and Zi-TAN models.421

4.6. Results and discussion of the case study422

4.6.1. Salamander423

Figure 6 represents the qualitative component of the TAN (a) and Zi-TAN424

(b) models for salamander. Figure 7 shows the box plots corresponding to425

the 10 measures of the 4 performance statistics for TAN and Zi-TAN, along426

with the p− values obtained in the pairwise comparison.427

The Wilcoxon Test showed no significant differences (p > 0.05) between428

both models regarding Accuracy. However, this measure is not recommend-429

able when the distribution of the classes is unequal, as in this case where there430

are 300 presences and 587 absences. On the other hand, the test showed sig-431

nificant differences (p < 0.05) between TAN and Zi-TAN for the remaining432

statistics: Recall, f-score and AUC. According to the statistical test applied,433

Zi-TAN performs better than TAN with reference to the true presence rate434

(Recall), i.e. the proportion of observed presences correctly classified was435

higher in the Zi-TAN model. Regarding f-score and AUC measures, Zi-TAN436

model scores higher than TAN, suggesting that the former classifies better437

than the latter in the case of salamander.438

Figure 8 shows the probability of presence of the salamander according439

to the TAN (a) and Zi-TAN (b) models, along with its observed distribution440

area. Both models recognize the general distribution pattern of the species,441

identifying 3 main populations: 1 sub-population located in the north, along442

the Sierra Morena mountain range; another sub-population located in the443

northeast, in the Prebaetic System; and another sub-population located in444

the south-southwest, in the Penibaetic System. Note that Zi-TAN misclassi-445

fied more observed absences than TAN, i.e. the type I error is lower in the446

TAN model. From the ecological point of view, the type I error or, in this447
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case, false presence may be understood as the potential distribution area for448

the species, i.e., where salamander has never been seen but the environmen-449

tal conditions meet its necessities. According to Martin et al. (2005) and450

Lecomte et al. (2013), observed true absences may occur if the species does451

not saturate its entire suitable area. The potential distribution area, based452

on the selected variables, predicted by the Zi-TAN model nearly corresponds453

to the observed distribution of the species.454

4.6.2. Eagle455

Figure 9 represents the qualitative component of the TAN (a) and Zi-456

TAN (b) models for eagle. Figure 10 shows the box plots corresponding to457

the 10 measures of the 4 performance statistics for TAN and Zi-TAN, along458

with the p− values obtained in the pairwise comparison.459

The Wilcoxon Test showed no significant differences (p > 0.05) between460

both models regarding Accuracy. As mentioned above, Accuracy may not461

be appropriate, especially for imbalanced datasets (Chawla, 2005). On the462

other hand, the test showed significant differences (p < 0.05) between TAN463

and Zi-TAN for Recall and AUC. The f-score statistic could not be calculated464

for TAN since every fold of the cross validation yielded a Recall of 0 and an465

undefined Precision (0 divided by 0) due to the fact that the model only466

predicted absences in this case. According to the statistical test applied,467

Zi-TAN performs better than TAN with reference to the true presence rate468

(Recall), i.e. the proportion of observed presences correctly classified was469

higher in the Zi-TAN model. Regarding AUC, Zi-TAN model scores higher470

than TAN, suggesting that the former classifies better than the latter in the471

case of eagle.472

Figure 11 shows the potential distribution area of eagle, based on the473

selected variables, given by TAN (a) and Zi-TAN (b) along with its observed474

distribution area. Examining these maps, it is noticeable that the TAN clas-475

sifier is more conservative than Zi-TAN, since the former relies more on the476

probability of the dominant class, absences, and barely classifies observations477

as presences. The TAN model obtained just 5 cells with probability of pres-478

ence higher than zero. The poor model’s performance may be due to the479

combination of a great number of zero-inflated explanatory variables (10 out480

of 15) and the imbalanced class variable (55 observed presences out of 887481

observations). In contrast, the Zi-TAN model fairly detected the 3 main pop-482

ulations of eagle in Andalusia: Doñana, Eastern Sierrra Morena and Central483

Sierra Morena. The model also marked, with low probability, the Campo484
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de Gibraltar county, in the south, as a potential distribution area of eagle,485

which was occupied by the eagle in the past (Gonzalez et al., 1989; González486

et al., 2008).487

5. Conclusions488

We have developed Zi-TAN, a new model for dealing with zero-inflated489

feature variables, using hybrid Bayesian networks. Our experimental re-490

sults showed strong evidence that our proposed methodology for modeling491

explanatory variables with zero excess improves the performance of the clas-492

sifier. In the case of salamander, an abundant species in the study area,493

the TAN model recognized the general pattern of the species and had a fair494

performance whereas the distribution area predicted by the Zi-TAN model495

corresponds almost exactly to the observed distribution area. In the case of496

eagle, a scarce species in the study area, the TAN model had a poor perfor-497

mance while Zi-TAN substantially improved the distribution area predicted498

by the former. The technique explained in this paper can be applied to499

species distribution models where the explanatory variables have an exces-500

sive number of zeros. Further research needs to be done in order to argue its501

application to other disciplines.502
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Table 1: Summary of variables. Note that not all these variables were included in the
models but a variable selection process was carried out.

Variable Description Source

Salamander
/Eagle

Presence/absence of the given
species in each cell

Spanish inventory of terrestrial
species a

T (◦C)
Average of annual mean tempera-
ture for the 30 year period 1971-
2000 in each cell

Annual Mean Temperature
Dataset of Andalusia. TIFF
raster format with 100 m
spatial resolution b

Rainfall (mm)
Average of annual rainfall for the 30
year period 1971-2000 in each cell

Annual Precipitation Dataset
of Andalusia. TIFF raster for-
mat with 100 m spatial resolu-
tion b

PET (mm)
Average of the annual potential
evapotranspiration for the 30 year
period 1971-2000 in each cell

Annual Mean Evapotranspi-
ration Dataset of Andalusia.
TIFF raster format with 100 m
spatial resolution b

Humidity in-
dex

Average of annual humidity index
for the 30 year period 1971-2000 in
each cell

Annual Mean Humidity Index
Dataset of Andalusia. Shape-
file format b

Land uses (%)
Percentage of occupation of each
land-use (#44) within each cell

Andalusian Land Use and Land
Cover Map (1:25,000) b

Soil (%)
Percentage of occupation of each
soil type (#63) within each cell

Andalusian Soil Map
(1:400,000) b

Lithology (%)
Percentage of occupation of each
lithological unit (#41) within each
cell

Andalusian Lithological Map
(1:400,000) b

Z (m a.s.l.) Average elevation of each cell Andalusian Digital Terrain
Model. Grid width 200 m
spatial resolution c

Slope (%) Average slope of each cell

Aspect (◦) Average aspect of each cell

# number of variables
aProvided by the Ministry of Agriculture, Food and Environment
bProvided by the Andalusian Environmental Information Network
cProvided by the Spanish National Geographic Institute
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Table 2: Statistics used to validate the classification models. TP, TN,FP and FN are,
respectively, the true positive, true negative, false positive and false negative rates. Pa-
rameter β is the relative importance of Precision vs Recall, and was set to 1 in the case
study.

Statistic Definition Statistic Definition

Accuracy TP+TN
TP+FN+FP+TN

f − score (1+β)×Recall×Precision
β2×Recall+Precision

Recall TP
TP+FN

Specificity TN
TP+FN

Precision TP
TP+FP

AUC 1
2
(Recall + Specificity)
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Figure 6: Structure of TAN (a) and Zi-TAN (b) models for predicting presence of sala-
mander given the explanatory variables. SGS: slate-greywacke-sandstone; SSCG: sand-silt-
clay-gravel. Shaded nodes with dashed lines represent the artificial binary variables used
to model the zero-inflated explanatory variables. Note that the dependence relationships
existing between the feature variables just allow the models to perform better.
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Figure 7: Box plots comparing TAN and Zi-TAN in terms of their performance statistics
in the Salamandra salamandra case. The p − values obtained in the Wilcoxon Test are
shown.
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(a) TAN model (b) Zi-TAN model

Figure 8: Potential distribution area of salamander, expressed as probability of presence,
predicted by TAN (a) and Zi-TAN (b) models. Cells filled in with straight lines represent
the observed distribution area of the species.
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Figure 9: Structure of TAN (a) and Zi-TAN (b) models for predicting presence of ea-
gle given the explanatory variables. SSGQ: slate-shale-greywacke-quartzite; SGS: slate-
greywacke-sandstone. Shaded nodes with dashed lines represent the artificial binary vari-
ables used to model the zero-inflated explanatory variables. Note that the dependence
relationships existing between the feature variables just allow the models to perform bet-
ter.
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Figure 10: Box plots comparing TAN and Zi-TAN in terms of their performance statistics
in the Aquila adalberti case. The p− values obtained in the Wilcoxon Test are shown.
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(a) TAN model (b) Zi-TAN model

Figure 11: Potential distribution area of eagle, expressed as probability of presence, pre-
dicted by TAN (a) and Zi-TAN (b) models. Cells filled in with straight lines represent the
observed distribution area of the species.
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