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Abstract Bayesian networks (BNs) are being increas-

ingly applied to environmental research. Nonetheless,

most of the literature related to environmental sciences

use discrete or discretized data, which entails a loss of

information. We propose a novel methodology based on

continuous BNs to predict the probability that surface

waters do not meet the standards, in relation to ni-

trate concentration, established by the European Wa-

ter Framework Directive. In order to achieve our pur-

pose, a Tree Augmented Naive Bayes (TAN), was devel-

oped and applied to estimate and map the risk of failing

to meet the European standards established. The TAN

models were tested by means of the k-fold cross valida-

tion method. The results revealed that the TAN model

performed proper risk maps and suggested that poor

water quality is highly probable in watersheds domi-

nated by irrigated herbaceous crops. On the contrary,

“good surface water status” is more likely to occur in

areas where forest is notably present.
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1 Introduction

It is widely recognized that agricultural practices can

put surface waters at risk of pollution, mainly by in-

creasing the concentration of nitrogenous compounds

resulting from the consumption of fertilizers (Tilman

et al 2001; Foley et al 2005; Moreno et al 2006; Scalon

et al 2007; Lee et al 2009). Risk assessment methods can

quantify resultant risks (surface water pollution), which

can be mapped in order to characterize a given area

in terms of risk levels. According to Lahr and Koois-

tra (2010) there is a enormous diversity of risk maps,

ranging from contamination maps to others showing the

outcome of complex predictive models. An interesting

approach to the concept of risk is given by the prob-

ability of exceeding a threshold concentration value of

a pollutant (Passarella et al 2002). This probabilistic

approach allows to estimate risk straightly from prob-

abilistic tools, whose results can be plotted in order to

obtain risk maps.

Bayesian networks (BNs) are probabilistic tools that

belong to the so-called probabilistic graphical models,

which use directed acyclic graphs to represent the joint

probability distribution over a set of variables, with

the aim of resolving complex problems (Larrañaga and

Moral 2011), including characterization, inference, clas-

sification and regression. Characterization refers to the

analysis of the dependence or independence relation-

ships between variables in the model by means of pres-

ence or absence of links in the graph. Inference refers to

using a BN to either predict the response or determine

the cause of any variable given new values (evidence)

of one or more variables in the model. Classification

and regression are specific inference problems, in which

one of the variables takes the role of interest. The aim

of a classification problem is to predict the value of a

discrete variable of interest - called the class variable

- given the values of other discrete or continuous vari-

ables - known as feature variables. The aim of a regres-

sion model, on the other hand, is to predict the value

of a continuous response variable, given some values of

the explanatory continuous or discrete variables.

The review by Aguilera et al (2011) showed that

BNs have been applied within the scope of Environ-

mental Sciences, mainly to solve inference issues (Ames

et al 2005; Fienen et al 2013; Quinn et al 2013; Dyer

et al 2014; Shenton et al 2014), but also for classification

problems (Palmsten et al 2013), while papers aimed at

resolving regression tasks were uncommon (Borsuk et al

2004). Likewise, while there has been widespread use of

discrete and discretized data (Wang et al 2009; Chan

et al 2010), few investigations have used continuous

data (Pérez-Miñana et al 2012). The infrequent use of
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continuous data may be due to the fact that, although

most available environmental data are either continu-

ous or hybrid (both discrete and continuous), BNs were

originally designed to deal with discrete data, therefore

environmental variables have usually been discretized,

which implies a loss of information (Uusitalo 2007). Re-

cently, a number of alternative solutions to this problem

of information loss have been proposed, including Mix-

tures of Polynomials (MoP) (Shenoy and West 2011),

Mixtures of Truncated Basis Functions (MoTBFs) (Langseth

et al 2012) and Mixture of Truncated Exponentials (MTE)

(Moral et al 2001). These solutions are able to handle

discrete and continuous variables simultaneously, with-

out imposing restrictions on the structure of the net-

work.

In the case of classification and regression problems

it is possible to use certain fixed structure models such

as naive Bayes (NB) or tree augmented naive Bayes

(TAN). These fixed structure models emphasize the im-

portance of one of the variables in the model, with the

remaining variables being conditionally dependent on

the variable of interest. The NB model is the simplest

BN, which assumes the feature/explanatory variables

to be conditionally independent of each other given the

class/response variable (Friedman et al 1997). The NB

model has been used both in classification (Bressan et al

2009; Markus et al 2010; Aguilera et al 2010; Fytilis and

Rizzo 2013; Aguilera et al 2013) and regression tasks

(Ropero et al 2014). However, feature/explanatory vari-

ables are highly correlated at times and the accuracy of

the prediction would be improved if dependence rela-

tionships between variables could be taken into account.

The TAN model allows links between feature/explanatory

variables, which results in an increase in complexity.

However, a TAN can provide greater accuracy than a

NB model (Friedman et al 1997). In spite of its po-

tential, the literature indicates that a TAN model has

been applied just once to solve a classification prob-

lem (Aguilera et al 2010) in the Environmental Sciences

area.

Applications of BNs to risk assessment and risk map-

ping are scarcely found in the Environmental Sciences

area and we are not aware that continuous data were

used. Pollino et al (2007) propose a methodology for BN

parameterization by means of combining expert knowl-

edge and data and, afterwards, the model is utilized

to assess the risk of a native fish in Victoria, Aus-

tralia. Dlamini (2011) uses BNs to estimate and map

fire risk in Swaziland. Aalders et al (2011) take the as-

sessment and mapping of vulnerability and risk of peat

deposits in Scotland to erosion as an example for apply-

ing BNs. Troldborg et al (2013) apply BNs to estimate

and map the vulnerability and risk of soil compaction

across Scotland. However, BNs have not so far been

applied to estimate and map pollution risk in surface

waters.

The objective of this paper is to develop a methodol-

ogy based on continuous Bayesian networks - more pre-

cisely, on a TAN regression model - in order to predict

and map the probability of exceeding a threshold value

of nitrate concentration in surface waters, taking several

land use and environmental variables into account. The

threshold value is determined by the EU Water Frame-

work Directive (WFD, 2000/60/EC), which is aimed at

meeting “good surface water status” for each river basin

in Europe by 2015. In the case of nitrate concentration,

the threshold value is set in 25 mg/L for Spain.

2 Methodology

2.1 Study area

The study area occupies roughly 60 000 km2 of An-

dalusia, a region of southern Spain (Fig. 1). The study

area borders the Sierra Morena mountain range on the

north, the Penibaetic System (which is the southern-

most mountain range in the Baetic System) on the

south-southeast-east, the Guadalquivir Marshes on the

southwest and Portugal on the west.

As far as elevation is concerned, the study area ranges

from 0 to 3460 meters above sea level, with the highest

regions corresponding to the Baetic Systems and the

Sierra Morena mountain range, and the lowest corre-

sponding to the Baetic Depression, a vast plain situ-

ated between the aforementioned mountain ranges and

created by the Guadalquivir river. This orographical

diversity enables a wide variation in volume of rainfall,

with the rainiest area being located in western foothills

of the Subbaetic System (exceeding 2000mm per year),

whereas the driest regions lie on southeastern inner de-

pressions of the Baetic Systems (being less than 500

mm per year).

Regarding soil, the study area is widely varied. The

Sierra Morena mountain range predominantly presents

siliceous lithology, developing acidic and shallow soils

with low permeability. In contrast, the Baetic Depres-

sion is composed of a variety of detrital and calcare-

ous materials, leading to deep and fertile soils, with

the most permeable ones laying along the banks of the

Guadalquivir river. The Baetic Systems present a rich

soil diversity, dominating calcareous materials (mainly

limestone and dolomite) that contribute to alkaline soils.

Concerning land use, (Fig. 2, Appendix A) almost

half of the study area (47.52%) corresponds to forest

cover, which is mainly located along the Sierra Morena

mountain range and the Prebaetic System. Agricultural
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Fig. 1 Study area, which occupies most part of Andalusia (37 ◦23’00”N 5 ◦59’00”W)

land uses represent an important part of the study

area (47.84%), with olive groves and rainfed herbaceous

crops being the most copious ones and being mainly

located in the Baetic Depression. Irrigated herbaceous

crops are predominantly present on the banks of the

Guadalquivir river.

2.2 Data pre-processing

Data from different thematic maps, such as nitrate con-

centration in surface waters, land use and land cover,

temperature, precipitation, potential evapotranspiration

and permeability, were obtained from the Andalusian

Environmental Information Network 1 and incorporated

into a geographic information system - the so-called Ar-

cGis (ESRI R©ArcMapTM10.0). The coordinate system

for all these datasets is based on the European Terres-

trial Reference System 1989 (ETRS89).

First of all, sampling points containing nitrate con-

centration (N) values were selected and, where possible,

1http://www.juntadeandalucia.es/
medioambiente/site/rediam

4 measurements taken at different times (1 per season)

were collected. N ranged from < 0.1 mg/L to 124.63

mg/L, with a mean of 13.88 mg/L and a standard de-

viation of 18.3 mg/L. In the analyses carried out in this

paper, we used the measurements taken at the sampling

points, rather than averaged values. Hence, 971 obser-

vations included in 312 sampling points were obtained.

To determine the contributing area of each sam-

pling point, ArcGis Hydrology toolset was used (Zhang

et al 2012), obtaining as a result a layer composed of

312 watersheds. Watersheds were utilized to delimit the

value of the remaining variables. The percentage of each

land-use within each watershed was calculated by di-

viding the area occupied by the land-uses by the water-

shed area (A). Soil permeability data (K) were incor-

porated for each given watershed in terms of 1 = low,

2 = medium and 3 = high.

Moreover, both the average annual potential evap-

otranspiration (PET) and the average daily precipita-

tion within each watershed were calculated. The daily

precipitation data were used to calculate the volume

of rainfall in a week (Rain vol.), the number of days
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Fig. 2 Land uses selected. For graphical reasons, general categories (Appendix A) are displayed

since the last rainfall event (Last event) and the num-

ber of rainy days during a week (Rainy week) for each

watershed.

Apart from N, sampling points presented tempera-

ture (T) records taken in situ. Elevation data (Z) were

added to each sampling point from the Andalusian Digi-

tal Terrain Model2 (DTM). Besides, Season (S) variable

was selected and obtained from the sampling dates.

Finally, these data yielded a matrix of 971 observa-

tions and 44 variables (Table 1), where each observation

represents a watershed, at different seasons, character-

ized by 44 features (34 land uses and another 10 vari-

ables: N; A; K; PET; Rain vol.; Last event; Rainy week;

T; Z and S).

Once the data matrix was built, data were rescaled

in order to make their values range between 0 and 1 by

using the transformation

x′ =
x− xmin

xmax − xmin
(1)

2The DTM, with grid width 200 m, was pro-
vided by the Spanish National Geographic Institute
(http://www.ign.es/ign/layoutIn/modeloDigitalTerreno.do)

2.3 Probabilistic Graphical Models. Bayesian

Networks

A Bayesian network (BN) is a statistical multivariate

model for a set of variables X = {X1, . . . , Xn}, which

is defined in terms of two components:

1. Qualitative component, comprising a directed acyclic

graph of random variables (vertices, X), with the

links between them representing the relationships

(of dependence or independence) between variables

in the model.

2. Quantitative component, where a set of conditional

probability functions represents the strength of the

relationships between the variables. The probability

distribution of each variable, given its parents, is

defined by

p(x1, . . . , xn) =

n∏
i=1

p(xi|pa(xi)) ∀x1, . . . , xn ∈ Ωx1,...,xn

(2)
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Table 1 Summary of variables

Variable kind Description

N (mg/L)a
Nitrate concentration. Data collected from sampling stations belonging to the Physico-
Chemical Quality Network of the EU WFD in several rivers in Andalusia.

A (km2)
Watershed area. Upslope area that drains water to each sampling point. These watersheds
were delineated by using ArcGis Hydrology toolset.

Land uses (%) b
Percentage of occupation of each selected land-use within each watershed (31 out of 34 are
agricultural land uses. Fig. 2). Note that minority land uses can be handled as General
categories (Appendix A) to facilitate the analysis of the results and discussion.

Kc
Permeability, encoded as 1 = low, 2 = medium and 3 = high by the Andalusian Envi-
ronmental Information Network. The average of soil permeability was calculated for each
watershed.

PET (mm)d Average of potential evapotranspiration calculated for each watershed.

Rain vol. (mm)e Average of total rainfall in a week calculated for each watershed.

Last event (days)e Number of days since last rainfall event, calculated for each watershed on average.

Rainy week (days)e Number of days having rainfall during a week, calculated for each watershed on average.

T (◦C)a Temperature taken in situ at the sampling stations.

Z (m a.s.l.)f Elevation of each sampling point.

S Season in which each sample was collected.

aVariable obtained from the Andalusian Dataset of Surface Waters
bVariables obtained from the Andalusian Land Use and Land Cover Map (1:25,000)
cVariable obtained from the Andalusian Dataset of Groundwaters
dVariable obtained from the Annual PET Dataset of Andalusia (500 m spatial resolution)
eVariables calculated from the Daily Precipitation Dataset of Andalusia (500 m spatial resolution)
fVariable obtained from the Andalusian DTM (200 m spatial resolution)

X1

X4

X2 X3

X5

Fig. 3 An example of a Bayesian network

where Ωxi
represents the set of all possible values of

variable xi and pa(xi) denotes an instantiation of the

parents of Xi. Fig. 3 shows an example of a Bayesian

network. It represents a joint distribution for variables

X1, . . . , X5 factorized as

p(x1, x2, x3, x4, x5) =

p(x1)p(x2|x1)p(x3|x1)p(x5|x3)p(x4|x2, x3). (3)

Note that the joint distribution is specified in terms

of smaller distributions involving fewer variables. In this

way, the network facilitates the specification of com-

plex distributions as it is done in a structured way. In

this work, we focus on modeling a particular variable,

namely the nitrate concentration (N). With this aim, we

will describe the use of BNs to solve regression problems

in the next subsection.

2.3.1 Bayesian Networks for Regression: NB and TAN

A Bayesian network can be used as a regression model.

Assume that Y is the response variable and X1, . . . , Xn

are the explanatory variables. Then, in order to pre-

dict the value for Y given the observations x1, . . . , xn,

the conditional density f(y|x1, . . . , xn), is computed to

give the numerical prediction for Y , denoted as ŷ. More
specifically, we use the conditional expectation of the

response variable (given the observed explanatory vari-

ables), which means that the regression model is (Fernández

and Salmerón 2008)

ŷ = g(x1, . . . , xn) = E[Y |x1, . . . , xn] =∫
ΩY

yf(y|x1, . . . , xn)dy. (4)

As f(y|x1, . . . , xn) is proportional to f(y)×f(x1, . . . , xn|y),

solving the regression problem requires the specifica-

tion of an n dimensional density for X1, . . . , Xn given

Y . However, using the factorization encoded by the

Bayesian network, this problem is simplified depend-

ing on the structure of the network. The extreme case

is the NB structure, where all the explanatory variables

are considered independent given Y (see Fig. 4(a)).

The strong assumption of independence behind NB

models is somehow compensated by the reduction on
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the number of parameters to be estimated from data,

since in this case, it holds that

f(y|x1, . . . , xn) ∝ f(y)

n∏
i=1

f(xi|y) , (5)

which means that, instead of one n-dimensional condi-

tional density, n one-dimensional conditional densities

have to be estimated.

The impact of relaxing the independence assump-

tion has been studied for regression oriented Bayesian

networks (Fernández et al 2007), employing the so-called

tree augmented naive Bayes (TAN) (Friedman et al

1997). In TAN models, more dependencies are allowed,

expanding the naive Bayes structure by permitting each

feature to have one more parent besides Y (see Fig. 4(b)).

In terms of the representation of the distribution over

Y,X1, . . . , Xn, we are interested in modeling problems

where discrete and continuous variables coexist. Dur-

ing the last decade, the model based on mixtures of

truncated exponentials (MTEs) (Moral et al 2001) has

perhaps been the most successfully employed in this

context.

The MTE model is characterized by a function de-

fined as follows. Let W = (W1, . . . ,Wd) and Z = (Z1, . . . , Zc)

be sets of discrete and continuous parts respectively. A

Mixture of Truncated Exponentials is a function f() de-

fined for each fixed value of the discrete variables as

f(z1, . . . , zc) = a0 +

m∑
i=1

ai exp


c∑
j=1

b
(j)
i zj

 (6)

where ai, i = 0, . . . ,m and b
(j)
i , i = 1, . . . ,m, j =

1, . . . , c are real numbers.

An MTE function f is an MTE density if it inte-

grates to 1. A conditional MTE density can be specified

by dividing the domain of the conditioning variables

and giving an MTE density of the conditioned variable

for each configuration of splits of the other variables. An

example of conditional MTE density for a continuous

variable Y given a continuous variable X is (Aguilera

et al 2013)

f(y | x) =



1.26− 1.15e0.006y

if 0.4 ≤ x < 5, 0 ≤ y < 13,

1.18− 1.16e0.0002y

if 0.4 ≤ x < 5, 13 ≤ y < 43,

0.07− 0.03e−0.4y + 0.0001e0.0004y

if 5 ≤ x < 19, 0 ≤ y < 5,

−0.99 + 1.03e0.001y

if 5 ≤ x < 19, 5 ≤ y < 43.

To estimate the parameters of MTE densities, we

followed the approach recently introduced in Langseth

et al (2014), which is based on least squares optimiza-

tion.

One of the advantages of using MTEs in BNs in-

stead of Gaussian densities (Lauritzen 1992) is that the

resulting model is more expressive. From the regression

point of view, it means that the conditional expectation

in Eq. (4) is not necessarily a linear model.

Algorithm 1: Selective MTE-TAN regression

model
Input: A database D for variables X1, . . . , Xn, Y .
Output: Selective TAN regression model for variable

Y .
1 for i← 1 to n, compute Î(Xi, Y ).
2 Let X(1), . . . , X(n) a decreasing order of the

independent variables according to Î(Xi, Y ).
3 Divide D into two sets: Dl, for learning the model,

and Dt for testing its accuracy.
4 Construct a TAN regression model M with variables

Y and X(1) from database Dl.

5 Let RMSE(M) the estimated accuracy of model M
using Dt.

6 for i← 2 to n do
7 Let M1 be the TAN regression model for the

variables in M and X(i).

8 Let RMSE(M1) be the estimated accuracy of
model M1 using Dt.

9 if (RMSE(M1) ≤ RMSE(M)) M ←M1.

10 return M .

2.3.2 Construction of TAN models using MTEs

The TAN structure (see Fig. 4 (b)) is not unique for a

given set of variables. The dependence structure among

the explanatory variables is obtained by constructing

a maximum spanning tree where the arcs are labelled

with the mutual information between the linked vari-

ables, conditional on the response variable (Friedman

et al 1997; Fernández et al 2007). More precisely, the

conditional mutual information between two explana-

tory variables Xi and Xj given Y is

I(Xi, Xj |Y ) =∫∫∫
f(xi, xj , y) log

f(xi, xj |y)

f(xi|y)f(xj |y)
dxidxjdy . (7)

The integral above cannot be obtained in closed

form for MTE densities, and therefore it has to be ap-

proximated. We adopt here the solution proposed in

(Fernández et al 2007), consisting of estimating it from
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Y

X2X1 ... Xn

(a)

Y

X1 X2 X3 X4

(b)

Fig. 4 Structure of a naive Bayes model (a) and a TAN model (b)

a sample of size m, {(X(k)
i , X

(k)
j , Y (k))}mk=1 drawn from

the joint distribution f(xi, xj , y), as

Î(Xi, Xj |Y ) =

1

m

m∑
k=1

(
log f(X

(k)
i |X

(k)
j , Y (k))− log f(X

(k)
i |Y

(k))
)
.

(8)

Not necessarily the best strategy for obtaining an

accurate regression model conveys the inclusion of all

the available explanatory variables in the model. In-

stead, we decided to use the variable selection proce-

dure described in (Morales et al 2007; Fernández and

Salmerón 2008), where the filter-wrapper approach de-

scribed by Ruiz et al (2006) is followed. It consists of

first ordering the explanatory variables according to

their mutual information with the response variable and

then including them one by one according to the initial

ranking, whenever the inclusion of a new variable in-

creases the accuracy of the previous model. The accu-

racy of the model is measured by the root mean squared

error between the actual values of the response variable

and those ones predicted by the model for the records

in a test database. If we call ŷ1, . . . , ŷn the correspond-

ing estimates provided by the model, the root mean

squared error is obtained as

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 . (9)

The details of the construction of the selective TAN

regression model are given in Algorithm 1.

2.3.3 Constructing structured TAN models

When modeling scenarios where the response variable

shows a high variability, more accurate models can be

obtained if the sample space of the explanatory vari-

ables is partitioned and a different model is fit within

each split. This is the motivation of successful regres-

sion models like the so-called model trees (Wang and

Witten 1997). Our proposal in this paper is to follow

a similar idea, taking as a basis the TAN regression

model. More precisely, our goal is to obtain a parti-

tion D1, . . . , Dl of the sample space of the explana-

tory variables X1, . . . , Xn, i.e. ∪li=1Di = Ωx1,...,xn and

Di ∩ Dj = ∅, i 6= j, and construct a regression model

expressed as

ŷ = m(x1, . . . , xn) =

l∑
i=1

gi(x1, . . . , xn)IDi(x1, . . . , xn),

(10)

where IDi
(x1, . . . , xn) = 1 if (x1, . . . , xn) ∈ Di and 0

otherwise, and each gi, i = 1, . . . , l is a regression model

as in Eq. (4), estimated as a TAN using the data in Di

according to Algorithm 1.

Several methods can be applied to obtain the parti-

tion of the sample space. A simple idea is to carry out

a hierarchical clustering identifying each individual by

the full set of variables, i.e. the response and explana-

tory variables. A TAN model gi is then fit within each

set Di in the partition and the centroid, denoted as ci of

Di is attached to gi. The centroids are computed taking

into account only the explanatory variables, as they will

be used to decide which TAN to use for prediction pur-

poses, when of course the value of the response variable

is not known. The details on constructing the struc-

tured TAN regression model are given in Algorithm 2.

When the learnt model is to be used for predicting

a value ŷ for a given configuration of the explanatory

variables, (x1, . . . , xn), the first step is to decide the

set in the partition where the configuration will be al-

located. It is achieved by computing the distance from

(x1, . . . , xn) to each one of the centroids attached to the

models gi. This corresponds to assigning value 1 to the

indicator functions IDi
in Eq. (10).

Note that, unlike classic ensemble techniques, the

prediction is made from a single model instead of from

a weighted average of all of them. The underlying idea

is inspired by random-effects models. However, the es-

timation procedure is completely different, as the TAN

model is aimed at estimating the parameters of the con-

ditional distributions.
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Algorithm 2: Structured TAN regression model

Input: A database D for variables X1, . . . , Xn, Y .
Output: A structured TAN regression model for

variable Y .
1 Obtain a partition D1, . . . , Dl of D using a

hierarchical clustering.
2 Let c1, . . . , cl be the centroids of D1, . . . , Dl computed

using only variables X1, . . . , Xn.
3 for i← 1 to l do
4 Obtain a TAN regression model gi for Y using the

data in Di.
5 Attach centroid ci to model gi.

6 Let IDi
(x1, . . . , xn) be a function returning value 1 if

ci is closer to (x1, . . . , xn) than any other centroid cj ,
and 0 otherwise.

7 return

m(x1, . . . , xn) =
∑l

i=1 gi(x1, . . . , xn)IDi
(x1, . . . , xn).

2.4 Validation of the Model

A k -fold cross validation (Stone 1974) was carried out

in order to test the structured TAN regression model.

This technique randomly splits the dataset into k sub-

sets and the method is repeated k times. In each step,

one subset is used to test the model built from the re-

maining k -1 subsets (training subset). Then, the RMSE

(Eq. 9) is computed in each step. Finally, the mean of

the RMSE is computed to measure the accuracy of the

model. In this paper, a k -value of 5 was applied.

2.5 Nitrate risk mapping

A remarkable advantage of regression models based on

Bayesian networks is their versatility, in the sense that
they not only provide a numerical prediction for a con-

figuration of the explanatory variables, but they also

give a full specification of the posterior distribution of

the response variable, which is the distribution used to

compute the conditional expectation in Eq. (4).

In a scenario where the target variable (Nitrate con-

centration in this case) may take different values for

different measurements in the same location, one may

be interested in determining the risk that the target

variable surpasses a given threshold, rather than giving

a fixed prediction.

With regard to Nitrate, water is considered to fail

to meet the WFD “good surface water status” if the

concentration goes above 25 mg/L. The TAN regres-

sion models described above can be used to plot risk

maps, where the term risk refers to the probability of

surpassing the aforementioned threshold, in which case

the water body is considered to be below “good sta-

tus”. Hence, for a given point in a map for which the

explanatory variables of the TAN regression model are

observed to be equal to (x1, . . . , xn), we define the risk

of failing to meet the “good surface water status” due

to Nitrate as

RN (x1, . . . , xn) =

P (Y > 25|x1, . . . , xn) =

∫ ∞
25

f(y|x1, . . . , xn)dy, (11)

where Y is the Nitrate concentration and f(y|x1, . . . , xn)

is the posterior distribution of Y given (x1, . . . , xn), ob-

tained from the TAN regression model described in sec-

tion 2.3.3.

The computation of the posterior distribution can

be carried out over the TAN model by means of the

probability propagation process, which consists of com-

puting the posterior distribution of some variables in a

Bayesian network given that some other variables have

been observed. We have implemented the computation

of the risk function in Eq. (11) in the Elvira software

(Elvira-Consortium 2002), using the variable elimina-

tion algorithm (Zhang and Poole 1996) for probability

propagation.

Note that function RN takes values on [0, 1]. A risk

map can be easily conformed by taking points inside

it and evaluating each one of them according to the

risk function. Each point can then be colored with an

intensity varying from dark green for low risk values (i.e.

close to 0) to dark red for high risk values (close to 1).

For graphical reasons, watersheds contributing to each

sampling point are colored on the risk map instead. A

simplified scheme of the methodology followed to obtain

the risk map is shown in Fig. 5.

3 Results

3.1 Regression models

The structures of the components of the TAN regres-

sion model are shown in Figs. 6, 7 and 8, where each

variable is influenced by the response variable (Nitrate

concentration) and by another explanatory variable di-

rectly linked with it in the network. Each component of

the TAN model selects the variables that best explain

the nitrate concentration in the given data set. It is im-

portant to note that the number of variables selected

by each component progressively increases from TAN 1

(8) to TAN 2 (11) and TAN 3 (15). The weighted aver-

age RMSE of the 3 component of the structured TAN

model, calculated as described in section 2.4, is 5.19.

TAN 1 selected 7 land use variables and 1 environ-

mental variable (T ). TAN 2 selected 9 land use vari-

ables and 2 environmental variables (PET and Z ). TAN
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Raw data
preprocessing Dataset

Learning
structured

TAN
regression

model
(STRM)

Probability
propagation

[P(N ≥ 25 mg/L)]

Risk map

New configu-
ration of the
explanatory

variables

Decide which
component

of the STRM
will be used

Fig. 5 Methodology followed to obtain the risk map

3 selected 11 land use variables and 4 environmental

variables (A, K, S and T ). Counting them all, 27 out

of the 44 variables were chosen. With reference to the

17 unchosen remaining variables, it is important to note

that none of the variables related to precipitation (Rain

vol., Last event, Rainy week) explain Nitrate concentra-

tion, for these datasets.

Forest was the only land use variable chosen by the

3 components of the TAN model. Furthermore, TAN 1

and TAN 2 coincided on 4 other variables: Olive grove,

Vineyard, Rainfed olive grove and vineyard crops and

Herbaceous and woody crops and natural vegetation. Mean-

while, TAN 1 and TAN 3 coincided only on Temperature

and TAN 2 and TAN 3 just coincided on partly Irrigated

herbaceous crops.

Regarding General categories (Appendix A), vari-

ables included in the Irrigated herbaceous crop, Miscel-

laneous and Agroforestry general categories were cho-

sen by the 3 models. On the other hand, variables in-

cluded in the General Rainfed woody crop category

were chosen only by TAN 1 and 2 while only TAN 3

chose variables included in the General Irrigated woody

crop category.

3.2 Analysis of risk map obtained through TAN

regression models

The risk map (Fig. 9) was obtained from the the struc-

tured TAN regression model, as explained in section 2.5.

The map shows the estimated probability that nitrate

concentration will exceed 25 mg/L in surface waters,

i.e., the risk of failing to meet the WFD. Table 2 shows

the average value of the variables within each risk level

class3(precipitation variables are included in the table,

even though none of the components of the regression

model selected them).

3Risk level classes: very low=[0-0.1], low=(0.1-0.3],
moderate=(0.3-0.5], high=(0.5-0.8] and very high=(0.8-1]
(Dlamini 2011)

N

RIWC

V

ROVC IHC

F T

HWC&NV OG

RIWC

V

ROVC IHC

F T

HWC&NV OG

Fig. 6 TAN 1. First component of the structured TAN model
used for constructing the risk map. N: Nitrate; RIWC: Rain-
fed and Irrigated Woody Crops; V: Vineyard; ROVC: Rainfed
Olive grove and Vineyard Crops; IHC: Irrigated Herbaceous
Crops; F: Forest; T: Temperature; HWC&NV: Herbaceous
and Woody Crops and Natural Vegetation; OG: Olive grove

Very low risk probabilities mainly correspond to wa-

tersheds located in the Sierra Morena mountain range

and eastern Baetic Systems. These watersheds are mainly

occupied by forest (77.62% on average), with olive groves

and rainfed herbaceous crops covering a low percentage

(7.27% and 5.60% respectively) and the remaining land

uses being scarcely represented. Moreover, these wa-

tersheds are located at the highest elevations (351.40

m a.s.l., on average) and present the lowest both wa-

tershed area (573.15 km2) and soil permeability value

(1.54), indicating a silty clay soil texture.

Low risk probabilities mainly correspond to water-

sheds bordering the Sierra Morena mountain range on

the south. On average, Forest does not dominate (34.94%),

Olive grove increases dramatically (up to 30.31%) and

both Rainfed herbaceous crops (16.52%) and General

Irrigated herbaceous crops (3.10%) become more patent.

The area of these watersheds is the largest (8340.19

km2, on average).
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N

ROVC

V

pIHCPET PF

Z RIHC

RHC HWC&NV

F OG

ROVC

V

pIHCPET PF

Z RIHC

RHC HWC&NV

F OG

Fig. 7 TAN 2. Second component of the structured TAN
model used for constructing the risk map. N: Nitrate; ROVC:
Rainfed Olive grove and Vineyard Crops; V: Vineyard; PET:
Potential Evapotranspiration; PF: Paddy Field; pIHC: Partly
Irrigated Herbaceous Crops; Z: Elevation; RIHC: Rainfed
and Irrigated Herbaceous Crops; RHC: Rainfed Herbaceous
Crops; HWC&NV: Herbaceous and Woody Crops and Natu-
ral Vegetation; F: Forest; OG: Olive grove

Moderate risk probabilities mainly correspond to

watersheds that border the Subbaetic System on the

north. There is a mixture of different crops, with dom-

inance of Forest (36.51%), Olive grove (23.64%) and

Rainfed herbaceous crops (18.40%). On average, Gen-

eral Miscellaneous crops increase up to 9.49% and Gen-

eral Irrigated herbaceous crops represent 3.83%.

High risk probabilities mainly correspond to water-

sheds located in the Baetic Depression. In these water-

sheds, the most important change in terms of land use

is the increase of General Irrigated herbaceous crops,

occupying up to 8.00%, on average.

Very high risk probabilities mainly correspond to

watersheds located in the lowest areas (145.04 m a.s.l.,

on average) of the Baetic Depression. On average, these

watersheds present the lowest percentage of Forest (11.33%)

and the highest of Rainfed herbaceous crops (35.75%),

General Irrigated herbaceous crops (14.71%) and Gen-

eral Irrigated woody crops (5.55%). In addition, these

watersheds show the highest soil permeability value (2.3),

indicating a sandy soil texture.

N

WC&WNV

IWCnIHC nIHWC

A

RIHWCHC&WNV CC

F

pIHC

WUT

S K

WC&WNV

IWCnIHC nIHWC

A

RIHWCHC&WNV CC

F

pIHC

WUT

S K

Fig. 8 TAN 3. Third component of the structured TAN
model used for constructing the risk map. N: Nitrate;
WC&WNV: Woody Crops and Woody Natural Vegeta-
tion; nIHC: Non-Irrigated Herbaceous Crops; nIHWC: Non-
Irrigated Herbaceous and Woody Crops; IWC: Irrigated
Woody Crops; A: watershed Area; HC&WNV: Herbaceous
Crops an Woody Natural Vegetation; RIHWC: Rainfed and
Irrigated Herbaceous and Woody Crops; CC: Citrus Crops; F:
Forest; T: Temperature; U: Urban; W: Water; pIHC: Partly
Irrigated Herbaceous Crops; S: Season; K: Permeability

4 Discussion

4.1 TAN as a new methodology for environmental risk

mapping

Many methodologies used to assess risk in surface wa-

ters are commonly based on indexes (Gillentine 2000;

Eimers et al 2000; Giupponi et al 1999; Verro et al

2002, 2009) and, even though there is no agreement on

the definition, risk is usually understood as the result

of combining vulnerability with hazard (Huang 2009;

Zou et al 2013). However, index methodologies based

on expert opinion may yield completely opposed re-

sults (Diamantino et al 2005) since the parameters and

weights introduced in the model can be different from

one methodology to another (Payraudeau and van der

Werf 2005). Probabilistic methodologies lead to a num-

ber of advantages over the traditional ones, such as the

avoidance of estimating both components (vulnerability

and hazard) of risk (Barca and Passarella 2008). This

advantage prevents undesirable errors, such as misesti-

mating one of those components (Moratalla et al 2011).

In this regard, we found that TAN models are use-

ful for assessing risk in surface waters, especially when

dealing with dynamical compounds such as nitrate. In

general, BNs provide several advantages over traditional

methods (Aguilera et al 2011). Instead of just provid-

ing a numerical prediction, the TAN is able to compute

the probability of a particular hypothesis (for instance,
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Fig. 9 Risk map depicting the probability of failing to meet the “good surface water status”

the probability that nitrate concentration will exceed

25 mg/L), which is useful for elaborating risk maps.

Moreover, we may also be interested in predicting the

posterior density of the response variable (Nitrate con-

centration) given some evidence of the explanatory vari-

ables (land uses, etc.), which is also possible since the

variables are expressed in terms of their density func-

tions. That means that the TAN provides us not only

with a numeric prediction of the response, but also with

a full specification of its posterior distribution. Know-

ing the distribution can be useful in practice for making

inferences about the response variable as, for instance,

computing confidence intervals or testing hypotheses.

On the other hand, BNs are capable of dealing with

continuous data, which allows each variable to be ex-

pressed in terms of its density function. However, none

of the found literature that performs BNs to estimate

risk uses continuous data (Liao et al 2010; Aalders et al

2011; Dlamini 2011; Liang et al 2012; Rennie et al 2007;

Troldborg et al 2013). On the contrary, discretizing con-

tinuous variables is a standard operating procedure,

even though it entails a loss of information (Aguilera

et al 2011).

In view of the qualitative component of the TAN

model, it is worth noting that as heterogeneity of land

use increases, the complexity of the structure augments

by adding explanatory variables. The selection as well

as the dependence relationships existing between ex-

planatory variables allows the model to perform better.

4.2 Assessment of the fulfillment of the Water

Framework Directive

The results highlight that areas dominated by forest

display a very low risk of exceeding the threshold val-

ues established by the European legislation. According

to Borin et al (2005) forested lands can act as buffer

strips, providing an efficient way to decrease nutrient

concentration from runoff. Moreover, these areas are lo-

cated at the highest elevations, which means that wa-

ter flow speeds downhill, reducing its residence time.

Also, steepness, inaccessibility and and poor quality

soils discourage the introduction of agricultural prac-
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Table 2 Average value of the variables within each risk level class

Risk level

Variable Very low Low Moderate High Vey high
L

a
n

d
u

se
s

(%
)

Urban 1.43 4.89 2.82 1.72 2.94

Water 2.15 1.66 2.08 1.68 1.71

Forest 77.62 34.94 36.51 34.88 11.33

Rainfed
herbaceous
crops

5.60 16.52 18.40 20.01 35.75

Olive Grove 7.27 30.31 23.64 25.02 23.87

Rainfed
woody crops*

0.64 1.86 0.93 1.21 0.52

Irrigated
woody crops*

1.04 1.62 1.21 1.89 5.55

Irrigated
herbaceous
crops*

0.97 3.10 3.83 8.00 14.71

Miscellaneous
crops*

1.79 3.87 9.49 4.29 3.07

Agroforestry* 1.48 1.25 1.09 1.29 0.55

A (km2) 573.15 8340.19 1624.84 4585.79 939.19

K 1.54 2.02 1.87 2.12 2.29

PET (mm) 63.48 66.70 66.03 60.83 66.08

Rain vol. (mm) 12.17 12.18 8.10 9.15 7.26

Last event (days) 3.28 2.52 2.42 2.33 2.81

Rainy week (days) 3.82 4.78 4.35 4.29 3.55

T (◦C) 16.44 16.62 16.83 16.55 17.45

Z (m a.s.l.) 351.40 258.00 247.07 268.98 145.04

* General categories. See Appendix A.

tices, which benefits water quality in terms of nutrient

concentration.

In contrast, watersheds located at the lowest ele-

vations in the Baetic depression favors the existence

of high yield crops because of the flat plains and the

soil fertility. These watersheds are occupied by impor-

tant percentages of irrigated (herbaceous and woody)

crops, which show a very high probability of exceeding

the “good quality” threshold. The results are consistent

with previous research which agrees on the large neg-

ative impact of irrigated crops on hydrological cycles

because of their high water requirement, fertilizer use

(Scalon et al 2007) and irrigation return flow (Causapé

et al 2006). Besides, the surface covered by rainfed herba-

ceous crops is considerably large. Rainfed herbaceous

crops are an important contributor to water pollution,

although to a lesser extent than irrigated crops, since

the absence of irrigation reduces the potential negative

impact on surface waters (Sun et al 2013). Regarding

olive groves, which also represent a relevant percentage,

they may affect water quality since they are treated
with excess nitrogen fertilizer (Fernández-Escobar et al

2009). Moreover, forest covers a small percentage and,

as a result, cannot act as buffer strips. Furthermore,

these watersheds are located at the lowest elevations;

hence, nutrients drain by runoff and accumulate at the

lowest outlets.

The remaining watersheds, whose risk level is halfway

between both previous situations (very low and very

high risk levels), show a mixture of land uses, where at

least 3 of them maintain a land-use balance in terms

of extension. However, it is observable that watersheds

classified as at high risk differentiate from the others

mainly because of the the increase of irrigated herba-

ceous crops, which (as mentioned above) are a major

source of nutrient enrichment to surface waters. On the

other hand, watersheds with a moderate risk of exceed-

ing the threshold present a notable percentage of Gen-

eral miscellaneous crops, which have an important com-

ponent of irrigated crops (Appendix A). With regard to
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low risk watersheds, even though the area occupied by

olive grove is large, land-use surface having irrigated

crops is low in percentage terms.

The results suggest that land uses, especially irri-

gated crops, are the most influential variables in nitrate

concentration. Nevertheless, some of the environmental

variables may play an active role. The average of El-

evation (Z) decreases dramatically from very low to

very high risk levels and keeps approximately constant

in the intermediate (low, moderate and high) risk lev-

els, where land uses determine the response of Nitrate

concentration. It is widely known that elevation is in-

versely related to agriculture, due to accessibility and

climate. Although some research has established a re-

lationship between nitrate concentration and precipita-

tion (Grimm and Lynch 2005), our selective structured

TAN regression model discarded variables related to

rainfall, which are not well correlated to Nitrate con-

centration, for our dataset.

5 Conclusions

The TAN model has not previously been applied to

draw surface water risk maps. The results given by the

structured TAN regression model accord with previous

studies, showing that this novel methodology performs

appropriate predictions, and also provides advantages

over other regression models. In addition, the existence

of efficient algorithms make learning, inference and val-

idation processes convenient.

The analysis of the risk map highlights that water

bodies running on intensive irrigated herbaceous farm-

lands are highly probable to exceed the trigger value of

25 mg/L, which indicates that those watersheds fail to

meet the “good surface water status” established by the

EU Water Framework Directive. Summing up, we have

found the TAN model to be an appropriate tool for risk

mapping in surface waters. Furthermore, this method-

ology can be applied to other environmental research

areas.

A Land uses

Land use variables incorporated into the data matrix. Per-
centage of occupation of each land use in the study area is
shown in brackets.

1. Urban (2.19%) includes urban, industrial and commer-
cial areas, landfills, mining deposits, communication in-
frastructure, parks, recreational and sport facilities and
areas under construction.

2. Water (2.45%) comprises surface waters in Andalusia,
including rivers, artificial channels, lakes and reservoirs.
For the study purposes, only waterbodies corresponding
to rivers were taken into account.

3. Forest (47.52%) includes forest, shrub and grassland cover.
4. Rainfed herbaceous crops (13.89%) consist of non-irrigated

herbaceous monocultures, with cereals (wheat, barley, oats)
and leguminous crops (peas, chickpeas, beans) being the
most copious crops.

5. Olive grove (21.08%) is the main crop of inland Andalu-
sia and consists of non-irrigated monocultures, excluding
wild olive trees.

6. Vineyard1 (0.28%) consists of non-irrigated monocultures,
devoted to grape production.

7. Rainfed woody crops1 (0.67%) comprise woody monocul-
tures under rainfed conditions, such as almond, carob,
fig, walnut or chestnut trees, excluding plots dedicated to
logging activities.

8. Rainfed olive grove and vineyard crops1 (0.03%) are com-
posed of mixtures of vine and olive trees under dry farm-
ing conditions.

9. Rainfed woody heterogeneous crops1 (0.03%) comprise vine
and olive tree associations with other rainfed woody crops,
where no dominance of any of the crops exists.

10. Abandoned olive grove1 (0.19%) comprises abandoned plots
of woody crops, patently dominated by olive grove.

11. Abandoned woody crops1 (0.03%) include abandoned plots
of undifferentiated woody crops.

12. Paddy fields2 (0.07%) consist of flooded parcels devoted
to rice cultivation.

13. Greenhouse crops2 (0.10%) consist of high yield crops
under controlled conditions.

14. Irrigated herbaceous crops2 (1.96%) comprise permanently
irrigated intensive herbaceous monocultures, including let-
tuce, asparagus, carrot, onion and garlic crops.

15. Partly irrigated herbaceous crops2 (2.07%) comprise both
irrigated and non-irrigated (but liable to be irrigated)
plots where herbaceous crops are grown.

16. Non-irrigated herbaceous crops2 (0.49%) consist of irri-
gated herbaceous crop areas that were not being watered
at the moment of taking the image.

17. Partly irrigated woody crops3 (0.14%) are composed of
both irrigated and non-irrigated (but liable to be irri-
gated) plots where woody crops are grown.

18. Citrus crops3 (0.64%) include orange, lemon, mandarin
and grapefruit trees, among other irrigated woody species.

19. Irrigated olive grove3 (1.17%) consists of irrigated olive
tree monocultures.

20. Tropical crops3 (0.00003%) include avocado, cherimoya,
mango and medlar trees, among other irrigated woody
species.

21. Irrigated woody crops3 (0.13%) include other irrigated
woody crops not aforementioned.

22. Irrigated woody heterogeneous crops3 (0.1%) consist of
undifferentiated woody crop mixtures under irrigated con-
ditions.

23. Rainfed herbaceous and woody crops4 (0.63%) consist of
annual herbaceous crops associated with permanent woody
crops under dry farming conditions.

24. Irrigated herbaceous and woody crops4 (0.23%) consist
of annual herbaceous crops associated with permanent
woody crops under irrigated conditions.

1Land uses included into the “General rainfed woody
crop” category

2Land uses included into the “General irrigated herba-
ceous crop” category

3Land uses included into the “General irrigated woody
crop” category

4Land uses included into the “General miscellaneous
crop” category
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25. Partly irrigated herbaceous and woody crops4 (0.02%)
comprise woody and herbaceous crop mixtures under ei-
ther dry farming or irrigated conditions.

26. Non-irrigated herbaceous and woody crops4 (0.01%) are
composed of woody and herbaceous crop mixtures which
are situated on non-irrigated plots at the moment of tak-
ing the image.

27. Rainfed and irrigated herbaceous crops4 (2.58%) com-
prise undifferentiated herbaceous crop mixtures under ei-
ther rainfed or irrigated conditions.

28. Rainfed and irrigated herbaceous and woody crops4 (0.31%)
are composed of undifferentiated woody and herbaceous
crop mixtures under either rainfed or irrigated conditions.

29. Rainfed and irrigated woody crops4 (0.01%) comprise un-
differentiated woody crop mixtures under either rainfed
or irrigated conditions.

30. Herbaceous crops and grasslands5 (0.25%) consists of land
mainly occupied by undifferentiated herbaceous crops, with
significant areas of grassland.

31. Herbaceous crops and woody natural vegetation5 (0.19%)
is composed of land mainly covered by herbaceous crops,
with a important portion occupied by woody natural veg-
etation.

32. Woody crops and grasslands5 (0.02%) consists of land
mainly occupied by undifferentiated woody crops, with
significant areas of grassland.

33. Woody crops and woody natural vegetation5 (0.43%) is
composed of land mainly covered by woody crops, with a
important portion occupied by woody natural vegetation.

34. Herbaceous and woody crops and natural vegetation5 (0.19%)
includes other undifferentiated crop mixtures associated
with natural vegetation, not aforementioned.
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project P11-TIC-7821 and by ERDF-FEDER funds. A.D.
Maldonado is being supported by the Spanish Ministry of Ed-
ucation, Culture and Sport through an FPU research grant,
FPU2013/00547.

Author conflict of interest declaration

We wish to confirm that there are no known conflicts of in-
terest associated with this publication and there has been
no significant financial support for this work that could have
influenced its outcome.

We confirm that the manuscript has been read and ap-
proved by all named authors and that there are no other
persons who satisfied the criteria for authorship but are not
listed. We further confirm that the order of authors listed in
the manuscript has been approved by all of us.

We confirm that we have given due consideration to the
protection of intellectual property associated with this work
and that there are no impediments to publication, including
the timing of publication, with respect to intellectual prop-
erty. In so doing we confirm that we have followed the regu-
lations of our institutions concerning intellectual property.

We understand that the Corresponding Author is the sole
contact for the Editorial process (including Editorial Manager

5Land uses included into the “General agroforestry” cat-
egory

and direct communications with the office). She is responsi-
ble for communicating with the other authors about progress,
submissions of revisions and final approval of proofs. We con-
firm that we have provided a current, correct email address
which is accessible by the Corresponding Author and which
has been configured to accept email from amg457@ual.es.

The authors;

A.D. Maldonado P.A. Aguilera A. Salmerón

References

Aalders I, Hough RL, Towers W (2011) Risk of erosion in peat
soils - an investigation using Bayesian belief networks. Soil
Use and Management 27:538–549

Aguilera PA, Fernández A, Reche F, Rumı́ R (2010) Hybrid
Bayesian network classifiers: Application to species dis-
tribution models. Environmental Modelling & Software
25(12):1630–1639

Aguilera PA, Fernández A, Fernández R, Rumı́ R, Salmerón
A (2011) Bayesian networks in environmental modelling.
Environmental Modelling & Software 26:1376–1388

Aguilera PA, Fernández A, Ropero RF, Molina L (2013)
Groundwater quality assessment using data clustering
based on hybrid Bayesian networks. Stochastic Environ-
mental Research & Risk Assessment 27(2):435–447

Ames DP, Neilson BT, Stevens DK, Lall U (2005) Using
Bayesian networks to model watershed management de-
cisions: an East Canyon Creek case study. Journal of Hy-
droinformatics 7:267 – 282

Barca E, Passarella G (2008) Spatial evaluation of the risk of
groundwater quality degradation. a comparison between
disjunctive kriging and geostatistical simulation. Environ-
mental Monitoring Assessment 137:261–273

Borin M, Vianello M, Morari F, Zanin G (2005) Effectiveness
of buffer strips in removing pollutants in runoff from a
cultivated field in North-East Italy. Agriculture, Ecosys-
tems and Environment 101:101–114

Borsuk ME, Stow CA, Reckhow KH (2004) A Bayesian net-
work of eutrophication models for synthesis, prediction,
and uncertainty analysis. Ecological Modelling 173:219–
239

Bressan GM, Oliveira VA, Hruschka ER, Nicoletti MC (2009)
Using Bayesian networks with rule extraction to infer risk
of weed infestation in a corn-crop. Engineering Applica-
tions of Artificial Intelligence 22:579–592
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