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Abstract

Climate change has been related to the current loss of global biodiversity. In
this paper, the effects of different scenarios of climate change on the distribu-
tion of the four classes of terrestrial vertebrate species in Andalusia (Spain)
are explored. The goal is to obtain potential climatically suitable areas for
each group (amphibians, reptiles, mammals and birds) under each proposed
scenario and examine the usefulness of the current static design of protected
areas. We propose a methodology to construct habitat suitability models,
which are used to predict the expected species richness given each projected
scenario of climate change. The relative change of the species richness within
National and Natural Parks, remainder of Natura 2000 network and unpro-
tected areas is compared. The results of the study show a broad effect of
climate change on the species richness distribution. In general, there is a
loss of specific richness and a restricted availability of suitable areas. The
protected areas located in higher altitudes maintain the best conditions for
the survival of the taxa considered in the proposed climate change scenarios.
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1. Introduction

The report by IPBES (Dı́az et al., 2019) considers five direct drivers
related to the current loss of biodiversity: changes in land uses, direct over-
exploitation of organisms, pollution, invasion of alien species and climate
change. In relation to climate change, humans are estimated to have caused
a likely range of 0.8-1.2 ◦C of global warming above to pre-industrial levels
(Masson-Delmotte et al., 2018). The progressive increase in temperatures
has affected many aspects of biodiversity, such as phenology (Stefanescu
et al., 2003; Brown et al., 2016), population dynamics (Wittwer et al., 2015),
community structure (Yang et al., 2011), or species distribution (Dyderski
et al., 2018).

Protected Areas (PAs) play an essential role in the conservation of biodi-
versity. However, in the current context of climate change, the conservation
planning and management of PAs should progress towards a suitable adapta-
tion (Schmitz et al., 2015), improving conservation strategies (Hannah et al.,
2007). With regard to planning, it is well recognized that ecosystems are dy-
namic, i.e., they change in space and time, for instance due to perturbations
or ecological successions, while PAs have always been fixed in space (Wiens
et al., 2011; D’Aloia et al., 2019). Different approaches have been proposed to
deal with this static approach: increasing the size of PAs, protecting specific
habitats or improving landscape connectivity, for example through stepping
stones (Stein et al., 2013; Tingley et al., 2014). European Natura 2000 net-
work highlights this static design of PAs. In Spain, the terrestrial surface of
Natura 2000 network is 13,8 million ha, which approximately represents the
27,3% of the Spanish territory. Thereby, Spain is the main contributor to
European Natura 2000 network.

In contrast to the static design of PAs, a dynamic perspective has been
proposed (Alagador et al., 2014; Lewison et al., 2015). In this sense, dynamic
area-based management considers areas temporarily protected and later re-
leased from legal protection when they are no longer needed (Alagador et al.,
2014; Lewison et al., 2015). Also, this dynamic approach considers the impor-
tance of networks of PAs (Gerber et al., 2014). Integrating both approaches,
dynamic ecological processes may be protected (D’Aloia et al., 2019). There-
fore, decision-makers need new methodological approaches that consider the
permanent PAs and the new dynamic conservation areas, public or private,
to deal with climate change and biodiversity conservation.

Species distribution models (SDM) are widely used to obtain spatial pre-
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dictions of environmental suitability for species (Guisan and Thuiller, 2005;
Guisan et al., 2013). These models have been applied for studying climate
change and biodiversity (Araújo et al., 2006; Brambilla et al., 2018) or the
suitability of reserves to confront climate change (Araújo et al., 2004, 2011).
Since the habitat of a species is composed of many observable characteris-
tics, a powerful tool is necessary to analyze the relationships between the
explanatory variables and the species.

Bayesian networks (BNs), which belong to the so-called probabilistic
graphical models, have been proposed as a tool to model species distribu-
tions (Aguilera et al., 2010; Tantipisanuh et al., 2014; Hamilton et al., 2015;
Maldonado et al., 2015; Meineri et al., 2015; Maldonado et al., 2016b) since
they provide a well founded approach for handling complex systems, and
also a flexible framework to allow the inclusion of expert knowledge, em-
pirical data and automatic learning. Roughly speaking, BNs are compact
representations of the joint probability distribution over a set of variables
whose independence relations are encoded by the structure of an underlying
directed acyclic graph (Pearl, 1988; Bielza and Larrañaga, 2014). BNs are a
versatile tool since they can be used to solve a variety of problems, including
characterization (Ropero et al., 2016), inference about sombe variables in
the model (Ames et al., 2005; Fienen et al., 2013; Quinn et al., 2013), super-
vised classification (Aguilera et al., 2010; Flores et al., 2012; Palmsten et al.,
2013; Maldonado et al., 2016b; Castro-Luna et al., 2019), clustering (Aguilera
et al., 2013; Fernández et al., 2014; Ropero et al., 2015; Rodrıguez-Sánchez
et al., 2017) or regression (Ropero et al., 2014; Scutari et al., 2014; Maldon-
ado et al., 2016a). Some recognized advantages of BNs are their ability to
perform analysis with small or incomplete data, the possibility of learning
the BN structure from data, as well as their ability of combining different
sources of knowledge (Uusitalo, 2007).

The aim of this paper is to explore the effects of climate change on the
distribution of the four classes of terrestrial vertebrate species in Andalusia
in order to obtain potential climatically suitable areas for each group and
examine the usefulness of current protected areas. More specifically, we built
a BN model for each group of species, ie, amphibians, reptiles, mammals
and birds, and predicted the expected richness of each group of species given
three different projected scenarios of climate change, proposed by the Inter-
governmental Panel on Climate Change (A1B, A2, B1). The methodology
followed to carry out our experiments is presented in Section 2. The obtained
results are analyzed in Section 3 and discussed in Section 4. The paper ends
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with conclusions in Section 5.

2. Material and methods

2.1. Study area

Andalusia is a region located in southern Spain which occupies an area of
87000 km2 and whose latitude and longitude is between 36◦N - 38◦44’N and
3◦50’W - 0◦34’E. As far as elevation is concerned, Andalusia ranges from 0
to 3479 meters above the sea level (Figure 1). The main mountain ranges
of Andalusia are the Sierra Morena mountain range (in the North) and the
Baetic systems (in the South), which are separated by the Baetic depression,
the lowest territory in Andalusia. The flattest areas correspond to the littoral
and the Baetic depression, through which the Guadalquivir river runs, and
the steepest ones to the Baetic Systems.

Andalusia’s geographic location and orographical diversity generate great
complexity in regards to its climate. For instance, the mean annual temper-
ature varies in accordance to altitudinal and latitudinal (coast-to-interior)
gradients, ranging from 10 to 20◦C. Moreover, there is a wide variation in vol-
ume of rainfall, with the rainiest area being located in western foothills of the
Subbaetic System (exceeding 2000 mm per year), whereas the driest regions
lie on southeastern coast (being less than 250 mm per year). In addition,
potential evapotranspiration (PET) ranges from about 300 mm/year in the
eastern Baetic systems to more than 1000 mm/year in both the Guadalquivir
river area and the eastern Mediterranean littoral.

Figure 1: Location and elevation (in meters) of the study area (Andalusia, Spain).
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As far as biodiversity is concerned, Andalusia has one of the highest in-
dexes in the European continent. Regarding just the terrestrial vertebrate
species, there are 259 birds, 62 mammals, 43 reptiles and 22 amphibians in
the study area, which sums up to 386 different species (MAPAMA, 2013).
From the conservationism point of view, there are 243 protected areas in the
study area, with 24 being Natural Parks and 2 being National Parks (Fig-
ure 2). In this regard, 3 different zones will be analyzed: 1) natural and
national parks; 2) Natura 2000 network (not including the aforementioned
parks); and 3) unprotected areas. National Parks and Natural Parks are
natural areas that have been little transformed by human exploitation and
activity and have been declared of general interest by national legislation in
the first case and by regional legislation (Regional Government) in the second
case. However, the administrative management in both cases is carried out
at regional level. The legislation on Natural Parks is considered to be some-
what more flexible in relation to permitted human activities (for example,
hunting or ecotourism but always controlled and regulated). The Natura
2000 Network was created by means of a European Union (EU) Directive
(92/43/EEC) for the conservation of a group of areas of high ecological value
at European level, which aims to guarantee the long-term survival of the most
valuable and threatened habitats and species in the EU. It includes Sites of
Community Importance (SCIs), Special Areas of Conservation (SACs) and
Special Protection Areas for birds (SPABs). The SCIs, SACs and SPABs
in Spain are considered protected areas, under the name ”Red Natura 2000
protected area”.
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Figure 2: Location of the Natura 2000 network of Andalusia. Natural and National Parks,
which are highlighted in blue color, also belong to the Natura 2000 network.

2.2. Data collection and description

The variables used to perform the experiments were obtained from dif-
ferent thematic maps, available in open source repositories. In particular,
the land-use and climatic variables where obtained from the environmen-
tal information network of Andalusia (REDIAM); the topographic variables
were computed from the Andalusian Digital Elevation Model, provided by
the Spanish National Geographic Institute; and data of the presence of ter-
restrial vertebrates were obtained from the Spanish Inventory of Terrestrial
Species.

A 10×10 km grid with presence records of different species was superim-
posed on the thematic maps in order to build a dataset for each group of
species. Each dataset is composed of a number of explanatory variables and
1 target variable. The coordinate system for all the datasets is based on the
European Terrestrial Reference System 1989 (ETRS89). The value of each
variable was calculated for the grid cells which are entirely (or mainly) located
in the study area. Afterwards, for each group of species, a dataset composed
of 46 variables taking values over 887 cells was obtained, where the target
variable is the richness of either amphibians, reptiles, mammals or birds,
and the remaining 45 variables are the explanatory variables (Table A.1).
This initial set of explanatory variables was selected in accordance with the
scientific literature and the available information in the official repositories.
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2.3. Description of the habitat suitability model

A structured Bayesian network (BN) with variable selection was built for
each group of species. In the next subsections, the details for the construc-
tion of the model for the baseline period (1960-2000) are explained. Broadly
speaking, the steps to obtain the structured model are: 1) obtain a parti-
tion of the study area to find homogeneous sub-regions (Section 2.3.3); and
2) fit a sub-model to each partition, following the variable selection proce-
dure explained in Section 2.3.2. A brief background to BNs is introduced in
Section 2.3.1.

2.3.1. Bayesian networks

Bayesian networks (BNs) are compact representations of the joint prob-
ability distribution over a set of variables X = {X1, . . . , Xn} whose indepen-
dence relations are encoded by the structure of an underlying directed acyclic
graph (DAG) (Pearl, 1988). Formally, a BN is defined as a pair (G, P), where
G is a DAG and P is a set of conditional probability distributions (CPDs).
G is composed of nodes, which represent random variables (X), and links
between pairs of nodes, representing statistical dependence between them.
Each node Xi has a distribution p(xi|pa(xi)) attached, where pa(xi) repre-
sents the parents of Xi in G. Attending to the factorization encoded in the
DAG, the joint probability distribution over all the variables in the network
is defined as the product of the CPDs attached to each node, so that

p(x1, . . . , xn) =
n∏

i=1

p(xi|pa(xi)) ∀x1, . . . , xn ∈ Ωx1,...,xn (1)

where Ωxi
represents the set of all possible values of variable xi and pa(xi)

denotes an instantiation of the parents of Xi.
BNs can be used as regression models (Larrañaga and Moral, 2011), whose

aim is to predict the value of a continuous variable of interest, Y -in this
case, the species richness-, given some values of the explanatory variables,
X1, . . . , Xn. A number of restricted DAGs have been proposed to solve re-
gression tasks, aiming at reducing the number of parameters to be estimated
from data while maintaining the accuracy of the model. The simplest case is
the naive Bayes (NB) structure, where the variable of interest Y is the parent
of all remaining variables X1, . . . , Xn, and these are considered independent
to each other given Y (Figure 3).
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Figure 3: Structure of Naive Bayes model.

There are different ways to represent CPDs, which depend on the nature
of the data, i.e. on whether the dataset contains discrete, continuous or both
kinds of variables. For continuous variables, Gaussian Bayesian networks are
widely used in the literature (Zhang et al., 2012; Meineri et al., 2015; Zhu
et al., 2016). A linear Gaussian Bayesian network is a BN in which all the
variables are continuous and all the CPDs are linear Gaussian, i.e., the mean
of each random variable is a linear combination of their parents.

In this work, we built a Gaussian NB model for each group of species,
where the target variable Y is the species richness of either amphibians, rep-
tiles, mammals or birds, and the explanatory variables are selected from Ta-
ble A.1 as explained in Section 2.3.2. Each model is composed of 3 sub-models
(or components), as explained in Section 2.3.3. The R package bnlearn (Scu-
tari, 2010) was used to estimate the parameters from data, following the
maximum likelihood estimation (MLE) method, whose aim is to find the
parameter that maximizes the likelihood function. The models were learned
using variables from Table A.1, where the climate-related variables are mea-
sured for the baseline period 1960-2000. The predicted expected values of
the variables of interest (species richness of amphibians, reptiles, mammals
and birds) were plotted on species richness distribution maps.

2.3.2. Variable selection

A variable selection process was carried out among the non-climatic vari-
ables, i.e. the models were built with the 12 climate-related variables de-
scribed in Table A.1 and a subset of the remaining variables. We used an in-
cremental wrapper sequential subset with replacement method (Wang et al.,
2015). Let Y be the response variable, i.e., the variable we are interested
in predicting, W = {W1, . . . ,Wc} the set of climate-related predictors and
X = {X1, . . . , Xn} the set of non-climatic predictive variables of Y . Let D
be the set of variables included in the modelM. Firstly, the predictive vari-

8



ables X were ordered according to their mutual information (MI) with Y ,
obtaining the ordered set Z = {Z1, . . . , Zn}. To initialize the algorithm, the
first variable in Z (Z1), the variables in W and the response Y are included
in D. Then, the variables in D are used to learn a regression model, M,
and a measure of predictive performance, E, is computed using the k-fold
cross validation technique. Afterward, the next variable in Z (Z2) takes 2
independent paths:

• it replaces the non-climatic predictive variables in D, one by one, and
the predictive performance of M′, E ′, is computed. If the error of the
new model M′ is lower, i. e., E > E ′, the new variable Z2 replaces Z1

and the new error (E ′) is set as the current error (E);

• it is inserted in D and the predictive performance of M′, E ′, is com-
puted. If E > E ′, Z2 is kept in D and E = E ′.

These steps are repeated for all the variables in Z and the loop starts over
while there is an improvement in the model’s performance.

In order to measure the predictive performance of modelM, we computed
the root mean square error (RMSE) between the observed and predicted
values of the variable of interest. The RMSE is defined as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 , (2)

where yi is the observed value of instance i and ŷ the predicted value.
As aforementioned, the models were validated by means of the k-fold

cross validation technique (Stone, 1974). This technique randomly splits the
complete dataset into k subsets, using k-1 for learning (train set) and the
other for validation (test set). The method is repeated k times so that each
time a new train set is used to learn the model and a new test set is used to
compute the RMSE. The average of the k error measures gives an estimate
of the out-of-sample error. In our experiments, a k-value of 10 was applied.

2.3.3. Constructing structured models

The study area shows a high spatial heterogeneity, as described in Sec-
tion 2.1, and as a consequence, the ecological processes governing the distri-
bution of species richness may be different at different locations. Therefore,
the relationship between the species richness and the explanatory variables
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may not be stationary but vary across the study area. A strategy to deal
with non-stationarity is to use partitioning methods to find homogeneous
sub-regions (Fortin and Dale, 2005; Legendre and Legendre, 2012) and fit a
sub-model to each partition.

Different methods can be used to obtain a partition. In this work, the
standard k-means clustering method was carried out and each observation
(i.e., each cell of the grid) was identified as belonging to a specific cluster
Ci, with i = 1, . . . , k. The observations were clustered based on the 12
climate-related variables described in Table A.1 in order to obtain climati-
cally homogeneous regions. Afterward, a NB model (Mi) was fit using the
data (Di) belonging to cluster Ci, as explained in Section 2.3.1 and follow-
ing the variable selection procedure described in Section 2.3.2. The elbow
method was followed in order to determine the number of clusters (k), ob-
taining an optimal of 4. However, since one of them had a size too small to
train the models, the data were finally clustered in 3 groups. Therefore, a
k value of 3 was used, so that each NB model is composed of 3 sub-models
(or components). For prediction purposes, given a new configuration of the
climate-related explanatory variables (w1, . . . , wc) of a cell belonging to the
i-th cluster, the model learned from the data corresponding to the i-th clus-
ter was used to compute the value ŷ. Note that, in practice, there are three
separate NB models and the predictions are made from a single model.

2.4. Scenarios of climate change

The Intergovernmental Panel on Climate Change (IPCC) proposed a
number of scenarios of climate change (CC) based on future greenhouse gas
emissions. Three of these scenarios were used to make predictions about the
expected species richness distribution in Andalusia. In particular, the A1B,
A2 and B1 scenarios were used since they are the ones with higher probabil-
ity to occur in this region, according to the regional government. Comparing
the three scenarios based on their carbon dioxide emission growth, the A2
scenario provides the highest growth, followed by the A1B and, finally, the
B1 scenario, which is translated into an increase between 2◦C and 4◦C of
global surface warming by the end of 2100 (Nakicenovic et al., 2000).

As a result of applying these scenarios to different General Circulation
Models, the evolution of the climatic variables in Table A.1 were projected
for the periods 2011-2040, 2041-2070 and 2071-2100. The regional Govern-
ment of Andalusia adapted these variables to the regional scale by applying
downscaling techniques. These data are freely available at http://www.
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juntadeandalucia.es/medioambiente/site/rediam. In this paper, these
climatic projected variables were used to make predictions about the ex-
pected species richness distribution for each taxon, period and scenario of
CC.

2.5. Scenario analysis

The three scenarios of CC were analyzed by performing probabilistic prop-
agation over the target variable (either amphibian, reptile, mammal or bird
species richness). Probabilistic propagation consists in computing the poste-
rior probability distribution of the variable of interest Y given some evidence
e of the observed variables E ⊂ X (Lacave et al., 2007). In this regard, we
can observe the changes in the posterior distribution of our target variable
(richness of amphibians, reptiles, mammals or birds) when new information
(IPCC projected variables) is introduced in the climate-related explanatory
variables. Given that the IPCC variables are projected for three periods and
three different scenarios of CC, nine evidence sets are used for the proba-
bilistic propagation process, obtaining as many posterior probability distri-
butions of the target variable. Then, for each group of species, period and
CC scenario, a habitat suitability map can be obtained by depicting the pos-
terior distribution on the grid, so that each cell is colored with an intensity,
varying from red (for low species richness prediction, i.e., low suitability) to
dark green (for high suitability). These maps provide spatial information
about possible distributions of the four groups of species for the projected
CC scenarios.

For visual purposes, the relative change of the target variable between the
baseline and the projected periods were computed and plotted on difference
maps. This maps represent changes (loss or gain) in species richness, which
can be interpreted as changes in habitat suitability. The relative change (D)
was computed as

D =
yt − y0
y0

× 100,

where Y0 is the target variable in the baseline period and Yt is the target
variable in projected period t (with t = {2011 − 2040; 2041 − 2070; 2071 −
2100}).

Finally, the relative change (D) of three different zones (“Natural and Na-
tional parks”, “Natura 2000 network, excluding parks” and “unprotected ar-
eas”) was compared for each scenario of CC (A1B, A2 and B1) and projected
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period (2011-2040, 2041-2070 and 2071-2100) using the Kruskal-Wallis test.
In those cases where statistical significant differences were found, Wilcoxon
rank-sum test was used to analyze each pair.

3. Results

In this section, we present the results obtained from the habitat suitability
model of each group of species, regarding:

• their estimated spatial distribution based on the baseline period;

• their expected distribution under three scenarios of CC for the pro-
jected periods 2011-2040, 2041-2070 and 2071-2100;

• their relative change with respect to the baseline period under each
projected period and scenario of CC.

3.1. Amphibians

Figure 4 presents the estimated amphibian richness for the baseline pe-
riod (right panel), based on the selected variables, as well as its observed
distribution (left panel). The model identifies the general distribution pat-
tern of the amphibian richness, with higher richness being located along the
Sierra Morena mountain range and western Andalusia, whereas lower am-
phibian richness is spotted in the Baetic Depression, most part of the Baetic
Systems and the SE. The weighted average RMSE of the 3 components of
the NB model for amphibians is 2.67.

Figure 4: Observed and estimated values of species richness of amphibians.
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Figure 5 shows the expected value of amphibian richness under the 3
scenarios of CC (rows) for each projected period (columns). In general, the
regions with higher species richness underwent a notable drop, with special
emphasis in the last projected period. Some Natural parks (Los Alcornocales,
Sierra de Grazalema and Sierra de Aracena y Picos de Aroche, i.e., numbers
1, 16 an 17 in Figure 2) are able to preserve the highest amphibian richness
through time.

Figure 5: Habitat suitability maps of amphibian richness under the A1B, A2 and B1
scenarios of global change.

Figure 6 shows the relative change between the baseline period and each
projected future, where intense red-color (-100%) indicates a loss of all the
species that were present in the baseline period; white color represents no
change with respect to the baseline period; and intense green color (≥+100%)
indicates that the number of species that were present in the baseline period
has at least doubled (the relative change has been truncated to 100% for
visual purposes). These maps can help visualize those areas where the pre-
dicted values increase or decrease with respect to the baseline period due
to changes in the climate-related variables. The model predicts a 100% of
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amphibian loss in most part of the Baetic Depression and Sierra Morena by
the last projected period under the three scenarios of CC.

Figure 6: Difference maps showing the relative change (%) of amphibian richness under
the A1B, A2 and B1 scenarios of global change with respect to the baseline period.

Figure 7 shows the results of the Kruskal-Wallis hypothesis test, where
the relative change of amphibian richness is compared among zones (“unpro-
tected”, “natural and national parks” and “reminder of Natura 2000 net”),
for each scenario of CC (A1B, A2 and B1) and projected period (2011-2040,
2041-2070, 2071-2100). Significant differences (p − value < 0.05) are found
in all comparisons. In all cases, the species loss is smaller in PARKS (i.e.
natural and national parks).
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Figure 7: Comparison of relative change (%) of amphibian richness by zone (for each
projected period and scenario). PARKS represents National and Natural parks; NATU-
RANET represents the Natura 2000 network, excluding PARKS; and UNPROTECTED
corresponds to the remainder of the territory. Some outliers are not shown for visual
purposes.

3.2. Reptiles

Figure 8 presents the estimated reptile richness for the baseline period, as
well as its observed distribution. The general distribution of reptile richness
is captured by the model, which identifies important areas of high number
of species, such as Sierra de Aracena y Picos de Aroche, Los Alcornocales,
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Doñana or Cabo de Gata-Nijar (numbers 1, 16, 22 and 26 in Figure 2, re-
spectively). The weighted average RMSE of the 3 components of the NB
model for reptiles is 4.67.

Figure 8: Observed and estimated values of species richness of reptiles.

Figure 9 shows the expected value of reptile richness under the 3 scenarios
of CC (rows) for each projected period (columns). In general, regions located
in the Sierra Morena mountain range will undergo a drastic drop, according
to the proposed model. Some regions that will preserve the current reptile
richness are located in the South-easternmost part of the study area.
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Figure 9: Habitat suitability maps of reptile richness under the 3 scenarios of global change.

Figure 10 shows the relative change (%) of reptile richness between the
baseline period and each projected future, where intense red-color (-100%)
indicates a loss of all species present in the baseline period. The model
predicts a reduction in the number of reptiles in the area corresponding to
Sierra Morena and the Baetic Depression, especially in the second and third
periods. On the other hand, the reptile richness increases in the SE. Finally,
the region corresponding to the Baetic Systems shows a gradual species loss
through time, though the reduction is smaller than in the Baetic Depression
and Sierra Morena mountain range.
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Figure 10: Difference maps showing the relative change (%) of reptile richness under the
A1B, A2 and B1 scenarios of global change with respect to the baseline period.

Figure 11 shows the results of the Kruskal-Wallis hypothesis test, where
the relative change of reptile richness is compared among zones, for each
scenario of CC and projected period. In all comparisons, significant differ-
ences (p− value < 0.05) among the 3 zones are found. In all cases, PARKS
presents a smaller species loss than the two other zones.
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Figure 11: Comparison of relative change (%) of reptile richness by zone (for each projected
period and scenario). PARKS represents National and Natural parks; NATURANET rep-
resents the Natura 2000 network, excluding PARKS; and UNPROTECTED corresponds
to the remainder of the territory. Some outliers are not shown for visual purposes.

3.3. Mammals

Figure 12 presents the estimated mammal richness for the baseline period,
as well as its observed distribution. The general distribution of mammal
richness is captured by the model, which identifies important areas of rich
biodiversity, such as Sierras de Cazorla, Segura y las Villas, Sierra Nevada
or Doñana (numbers 7, 14 and 22 in Figure 2, respectively). However, the
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model underestimated other rich areas, such as Sierra de Andújar (number
5). The weighted average RMSE of the 3 components of the NB model for
mammals is 6.85.

Figure 12: Observed and estimated values of species richness of mammals.

Figure 13 shows the expected value of mammal richness under the 3
scenarios of CC (rows) for each projected period (columns). In general, the
mammal richness decreases through time, with only few regions maintaining
higher richness than average in the most optimistic scenario (B1).
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Figure 13: Habitat suitability maps of mammal richness under the 3 scenarios of global
change.

Figure 14 shows the relative change between the baseline period and each
projected future, where intense red-color indicates a loss of the 100% of the
mammals present in the baseline period. In general, the model predicts a
reduction in the number of mammal species, with respect to the baseline
period, in all the study area. The northernmost part of Sierra Morena shows
an area of growth in the first projected period (2011-2041), which disappears
in the following periods. Only the B1 scenario maintains this area with
positive change until the last period, where no change is expected, according
to the model.
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Figure 14: Difference maps showing the relative change (%) of mammal richness under
the A1B, A2 and B1 scenarios of global change with respect to the baseline period.

Figure 15 shows the results of the Kruskal-Wallis hypothesis test, where
the relative change of mammal richness is compared among zones, for each
scenario of CC and projected period. Regarding the A1B scenario, signif-
icant differences (p − value < 0.05) were found among the 3 areas in the
first and last periods, with PARKS undergoing a higher loss than UNPRO-
TECTED in the former and smaller than the other two in the latter period.
Concerning the A2 scenario, significant differences were found in all compar-
isons, with PARKS having a higher species loss than UNPROTECTED in
the first period and smaller than the other two in the next periods. Finally,
no statistically significant differences among the 3 zones were found under
the B1 scenario.
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Figure 15: Comparison of relative change (%) of mammal richness by zone (for each
projected period and scenario). PARKS represents National and Natural parks; NATU-
RANET represents the Natura 2000 network, excluding PARKS; and UNPROTECTED
corresponds to the remainder of the territory. Some outliers are not shown for visual
purposes.

3.4. Birds

Figure 16 presents the estimated bird richness for the baseline period, as
well as its observed distribution. The general distribution of bird richness is
captured by the model, which identifies important areas of rich biodiversity,
such as Sierras Subbéticas, Sierra de Grazalema ot Sierra de las Nieves (num-
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bers 11, 17 and 18 in Figure 2, respectively). The weighted average RMSE
of the 3 components of the NB model for birds is 17.23.

Figure 16: Observed and estimated values of species richness of birds.

Figure 17 shows the expected value of bird richness under the 3 scenarios
of CC (rows) for each projected period (columns). Generally speaking, the
bird richness loss will be specially severe in the Sierra Morena mountain range
and the Baetic Depression.
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Figure 17: Habitat suitability maps of bird richness under the 3 scenarios of global change.

Figure 18 shows the relative change between the baseline period and each
projected future, where intense red-color indicates a loss of the 100% of the
species present in the baseline period. The model predicts a reduction in
the number of birds in the Sierra Morena mountain range and in the Baetic
Sistems, with respect to the baseline period, whereas protected areas located
in the Baetic Systems will experience a relative loss close to 0.
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Figure 18: Difference maps showing the relative change (%) of bird richness under the
A1B, A2 and B1 scenarios of global change with respect to the baseline period.

Figure 19 shows the results of the Kruskal-Wallis hypothesis test, where
the relative change of bird richness is compared among zones, for each sce-
nario of CC and projected period. In all comparisons, significant differences
(p − value < 0.05) between pairs were found, where PARKS (i.e. natural
and national parks) presented smaller species loss than the two other zones.
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Figure 19: Comparison of relative change (%) of bird richness by zone (for each projected
period and scenario). PARKS represents National and Natural parks; NATURANET rep-
resents the Natura 2000 network, excluding PARKS; and UNPROTECTED corresponds
to the remainder of the territory. Some outliers are not shown for visual purposes.

4. Discussion

4.1. The habitat suitability model

We have presented a methodology to estimate the habitat suitability of
four groups of species under different scenarios of climate change. The choice
of using BNs was motivated by the fact that they provide a sound approach to
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deal with complex systems under uncertainty. For regression tasks, restricted
structures are often used due to the reduction in the number of parameters
to be estimated from data. The NB model is the simplest yet powerful BN
model. It has been widely used due to the fact that, among other advantages,
it is easy to build, fast and provide reliable results (Friedman et al., 1997;
Fytilis and Rizzo, 2013; Maldonado et al., 2019).

Many authors have described the value of BNs (Uusitalo, 2007; Aguilera
et al., 2011; Chen and Pollino, 2012; Bielza and Larrañaga, 2014), including
their capability of obtaining predictions even if only partial information is
available (as in this work, where only climate variables were used to make
predictions) or their potential to compute the probability of a particular
hypothesis (due to their probabilistic nature). Moreover, BNs are able to
accommodate different conditional probability distributions, depending on
the nature of data.

The presented model uses linear Gaussian distributions, which assumes
linearity between the explanatory and response variables. However, this lim-
itation has been partly overcome by carrying out a partition of the sample
space. Nevertheless, we had to extrapolate beyond the observed data for
some climate projections, specially the farthermost scenarios (period 2070-
2100). The climate projections for the first period (2011-2040) never extrap-
olate further than 13% of the observed range. However, the extrapolation
for the second and third periods entails higher uncertainty. One of the main
problems of extrapolation is that the predictions may stop making sense.
For instance, the predicted number of species could be negative. In these
cases, the results were truncated to 0. Moreover, the relationship between
the response and the explanatory variables might be different outside the
calibration range. For these reasons, the extrapolated predictions are bur-
dened with uncertainty since they assume that this relationship is maintained
beyond the observed data.

The habitat suitability models were trained using the entire set of climate-
related variables and another subset of selected variables. The decision of
not dropping any climate variable allowed to use all the available information
of the climate change scenarios when running predictions. As a result, the
combined effect of all climate variables in each scenario is observed in the
habitat suitability maps.

A drawback of NB models is their assumption of independence, i.e., the
explanatory variables are considered to be independent given the response
variable. As a consequence, the effects of climate on other parts of the system,
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such as land uses, is only seen through the species richness node, which means
that possible side effects derived from climate change (for instance, land use
changes) are not taken into account to predict the species richness. In order
to take these side effects into account, more complex models are needed. An
example of such models is the Tree Augmented Naive Bayes (TAN), which
extends the NB model by allowing the explanatory variables to have one
more parent besides the response. In general, the increase in complexity
results in richer and more accurate models (Friedman et al., 1997). However,
TAN models are more difficult to implement and their computational cost is
higher.

Another concern about the proposed models is that, even though they
are able to predict the species richness of a particular group, no information
about which particular species are affected by the introduced changes is ob-
tained. As future work, the methodology presented in this work could be
used to build a classifier for each single species. In this context, both the
naive Bayes and TAN structures could be used to build the classifiers, so
that their predictive accuracy could be compared.

4.2. Climate emergency and biodiversity alteration

Climate change (CC) and the alteration of biodiversity are some of the
most important global biophysical changes derived from human activity.
Variations in climate are exerting added pressure on biodiversity, habitat
suitability and species distribution (Parmesan and Yohe, 2003; Root et al.,
2003; Pecl et al., 2017). The severity of changes in the climate system (gen-
eralizing, temperature increase, and variation in abundance and distribution
of rainfall) is such that the scientific community has declared that the planet
is facing a climate emergency (Ripple et al., 2019) and the European Union
has taken immediate action (European Parliament, 2019). The prevailing
global warming is affecting human health and well-being as well as groups of
plant and animal species (Pecl et al., 2017).

The main indicators used to detect the effects of CC on plant and ani-
mal diversity have been species richness and species distribution (Lemoine
et al., 2007; Stiels and Schidelko, 2018). Using these indicators, for the case
of amphibians in Andalusia, it was observed that high values of biodiversity
would be maintained only in those mountainous areas with the highest rain-
fall. In the rest of the region, amphibians suffered a considerable decline of
their species richness. By 2100, in any of the proposed CC scenarios, their
richness would be less than 5 species, or they would become extinct in more
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than 50% of the territory. It was also noted a persistence of amphibians in
humid mountainous areas. Similar results were perceived in China where the
effects of CC would cause a loss of species richness (20%) and a displacement
to higher altitudes (95% of amphibians) (Duan et al., 2016). However, recent
studies have admitted the uncertainty and geographic dependence on the ac-
tual effect of global warming on the amphibian species (Miller et al., 2018;
Ashrafzadeh et al., 2019; von May et al., 2019). For the Mediterranean coun-
tries, the reduction of permanent wetlands and rivers due to the combined
effects of land use and CC should be assessed in order to better understand
the impacts on amphibian species (Hof et al., 2011). Particularly, in An-
dalusia there is an alarming lack of studies on amphibians and their current
conservation status (Dı́az et al., 2020).

Our study also revealed that species richness and habitat suitability for
reptiles in Andalusia would be affected in the different CC scenarios. In
general, for the three scenarios proposed there would be a loss of richness
and suitable habitats, although it can be highlighted that there would be a
positive change in richness in a mountainous area in the centre-east of the
region. Scenario B1 would cause the least drastic changes in reptile richness
whereas the three scenarios would maintain the best survival conditions in the
highlands of the SW and in the arid and sub-desert area of the SE. Le Galliard
et al. (2012) predicted, using niche models, that projected climatic variations
over the next few years should result in substantial changes in the range
and abundance of most reptiles in Europe. In some cases, these changes
can be considered positive (higher growth and fecundity, earlier maturation,
higher reproductive success, higher survival), but in others negative (lower
survival, higher water and thermal stress, lower dispersion). The endemic
species of the Mediterranean Basin, adapted to the cold and limited by the
availability of water, are also expected to decrease (Foufopoulos et al., 2010).
At the same time, several studies in different geographical areas established
for certain reptile species increases in their range and their capacity to adapt
to new environmental conditions caused by CC (Bickford et al., 2010; Bezeng
et al., 2017; Berriozabal-Islas et al., 2018; Nori et al., 2018).

The effects of CC on amphibians and reptiles, according to a systematic
review, were reported in 65% of the studies. In half of the cases, CC was
identified as causing population declines or range restrictions (Winter et al.,
2016). However, in the case of European amphibians and reptiles, Araújo
et al. (2006) argued that the impact of rising temperatures may be less dam-
aging than was postulated in previous decades and emphasize, however, that,

30



for amphibians, their vulnerability to changes in climate may be accentuated
by the projected decline in water availability and their limited dispersal ca-
pacity. Based on the existing contrasting results, Winter et al. (2016) claim
that it is impossible to draw global conclusions for amphibians and reptiles
since the probability of identifying an effect of CC varies between regions,
taxa and research methods.

As far as mammals are concerned, it has been noted that their demo-
graphic decrease would be drastic towards the year 2100, with special em-
phasis on the scenarios A1B and A2 since the first time projection. These
results agree with different studies that suggest that mammal communities
in a given geographic region will respond to CC by altering both taxonomic
composition (through local extirpation, global extinction or species immi-
gration) and species richness (through changes in extinction, extirpation and
immigration rates). Other possible effects, also mentioned, are the alteration
of the relative abundance of individuals within species, possible phenotypic
modifications not necessarily accompanied by genetic change and the evo-
lution of new species (Barnosky et al., 2003). Maiorano et al. (2013) high-
lighted the relevance of mountainous areas as hotspots of mammal diversity
and their risk of exposure to extreme climatic situations, specifically in the
Alpine, Mediterranean and Black sea biogeographic regions. For the Mediter-
ranean Basin, the results observed on the effects of CC on the distribution of
mammal species, and the communities they form, suggest that they may not
suffer a drastic loss of species from their current distribution, but a change in
community structure (Maiorano et al., 2011). In two studies in Spain, San-
toro et al. (2017) observed a negative incidence on the abundance of certain
species of small mammals due to the increase of extremely hot days whereas
Aragón et al. (2010) showed that mammals, compared to birds, reptiles and
amphibians, would be the taxonomic group least affected by climate vari-
ability. Our results highlight that, by 2100, mammal richness would be less
than 10 species in most part of Andalusia for scenarios A1B and A2, which
means a massive decline of this group.

Finally, the birds showed their highest values of specific richness in moun-
tainous areas. In the first temporal range (2011-2040) the high biodiversity
of birds is maintained in these areas for all three scenarios and, although
there is a small decline, it is maintained for the rest of the temporal ranges
in all three scenarios. Similarly, in a study covering the Spanish part of
the Iberian Peninsula, it was observed that half of the bird species studied
showed a generalized pattern towards increasing populations, while only one
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tenth showed a significant decline (Seoane and Carrascal, 2008). In England,
resident and short-distance migrant populations were seen to have increased
in response to CC, but potentially at the expense of long-distance migratory
birds, habitat specialists and species associated with the cold (Pearce-Higgins
et al., 2015). Although it was suggested earlier this decade that the study
of climate-induced distributive change in birds was at a predictive modelling
stage (Crick, 2004), it is now assumed that CC is an increasingly impor-
tant driver of changes in the distribution, abundance and life cycle of bird
species, causing changes in biodiversity and community composition (Traut-
mann, 2018).

4.3. Effectiveness of Protected Areas: static vs dynamic approach

Our study showed that the current Andalusian PAs (Parks and Natura
2000 Network), especially those located in mountainous areas, seem to main-
tain the best habitat conditions and higher values of species richness for
the terrestrial vertebrates studied, except for mammals where this positive
condition is less clear. However, in most of them, especially in low eleva-
tion areas, the impact of global warming would be significantly negative.
Specifically, in the case of amphibians, it was observed that high values of
biodiversity would be maintained in humid mountainous areas corresponding
to the natural parks of Sierra de Aracena y Picos de Aroche, Los Alcornocales
and Sierra de Grazalema. A similar study also showed that in the face of
CC, PAs were effective in maintaining the representation of amphibians, but
conservation targets based on geographic range extent are achieved for only
40% of species (D’Amen et al., 2011). For reptiles, in general, for the three
CC scenarios proposed there would be a loss of species richness and suitable
habitats. However, reptiles would maintain the highest biodiversity values in
national and natural parks and, it can be highlighted that there would be an
increase in species richness in the area corresponding to the Natural Park of
Sierra Maŕıa-Los Vélez. Scenario B1 would cause the least drastic changes in
species richness and in the three scenarios the best survival conditions would
be maintained in the area corresponding to different humid and elevated PAs
(Los Alcornocales and Grazalema, coinciding with amphibians) and in the
Cabo de Gata-Nı́jar Natural Park. According to a work carried out in the
Iberian Peninsula, it was found that, on the one hand, the representation
of amphibians and reptiles in PAs was not higher than randomly expected
(Araújo et al., 2007) and that, on the other hand, the CC would negatively
affect both groups, both inside and outside PAs (Alagador et al., 2014).
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The Natural Park of Sierras de Cazorla, Segura y Las Villas and the Sierra
Nevada National Park showed a relatively higher mammal biodiversity for the
three CC-scenarios but, contrary to the rest of the taxonomic groups studied,
Andalusian PAs have not shown significant differences with unprotected areas
in terms of concentrating a greater number of mammal species over time for
the more optimistic scenario (B1). Other studies found a mammal species
loss of up to 20% and a drastic influx of new species within national park
boundaries (Burns et al., 2003) and the observed and potential mammal
species richness for the Spanish peninsular National Park Network in two
temporal moments (2002 and 2015) were higher within than outside the Park
Network in both cases, although the favorability of national parks reduced
from 2002 to 2015 (Estrada et al., 2018). In any case, it should be noted
that a change in mammal species richness and an increase in extinction risk
is expected for the Mediterranean Basin and, in this context, the current
network of PAs is not expected to effectively conserve existing species, as most
PAs will lose species according to the analyses of a recent study (Maiorano
et al., 2011). In the case of birds, the results showed a clear difference between
species richness inside and outside PAs, with higher values in the PAs, such as
the natural parks of Grazalema, Sierras Subbéticas and Sierra de las Nieves.
Similar results were found by Hole et al. (2009) and Gillingham et al. (2015)
but, nevertheless, other authors showed the lack of effectiveness of PAs for
the protection of birds (Beale et al., 2013; Regos et al., 2016). Specifically,
Regos et al. (2016) found that in the NE of Spain in the face of two CC
scenarios for the time range 2040-2069, the number of suitable habitats for
the bird species studied decreased considerably both inside and outside PAs
even though the number of suitable habitats is expected to decrease less
inside than outside PAs.

PAs are key conservation tools used to protect species and their habitats
within fixed administrative boundaries. In the face of global environmental
problems, such as CC, this inflexibility of administrative boundaries calls
into question the future ability of PAs to fulfil their conservation mandates.
The conservation paradigm in which the declaration of PAs was historically
framed was based on the ecological reference of natural biological commu-
nities of maximum successional maturity or climax. Based on this static
concept of nature (metaphorically, to conserve a photograph of a given mo-
ment and space), the limits of the territory (the photograph) to be conserved
were established. As the knowledge of nature progressed, it became clear that
the changes are not disturbances, but part of the life cycle of the biological

33



communities. From this dynamic perspective, conservation implies main-
taining ecological processes that develop over time and in a space that is
difficult to limit (metaphorically, preserving a film without a specific end)
(Van Dyke, 2008; Walker and Salt, 2012; Prober et al., 2019). At the same
time, the transformation of the territory, the evidence of the finiteness of
natural resources, the change in society’s awareness since the Millennium
Ecosystem Assessment, the economic valuation of ecosystem goods and ser-
vices, the perception of the existence of critical transitions (i.e., thresholds
or tipping points) in the behaviour of ecosystems, the recent global finan-
cial crisis and the emerging climate crisis, were delineating, and maintain in
constant adaptation, a new conservation paradigm based on socio-ecological
sustainability (Rescia et al., 2010; Balvanera et al., 2017). This paradigm,
framed in the resilience thinking, assumes a society-nature relationship that
must be adaptable, complex, capable of transformation and with several
states of equilibrium. Under this framework, sustainability as a conservation
objective would imply conserving the natural and cultural heritage, opti-
mizing the use of natural resources and ensuring human well-being. Opera-
tionally, it means applying an ecosystem vision while preserving its integrity
(processes, functioning and function -goods and services for society-) and rea-
sonable land uses at landscape scale considering the legitimacy of adaptive
multifunctional management. Administratively, it means applying alterna-
tive protection policies (administrative formats and tools) such as, dynamic
or floating PAs, private areas for conservation, payment mechanisms to soci-
ety (payments for ecosystem services, land stewardship) and environmental
DNA -eDNA- (Rayfield et al., 2008; Alagador et al., 2014; Cristescu and
Hebert, 2018; Capano et al., 2019; Hoffmann et al., 2019). Indeed, D’Aloia
et al. (2019) propose a novel approach to climate adaptation that combines
permanent protected areas with temporary conservation areas to create flex-
ible networks, combined with new policies, creative financing solutions and
wider acceptance of a dynamic approach to biodiversity conservation.

5. Conclusions

The results of the study show a broad effect of CC on the species richness
and distribution of terrestrial vertebrates in Andalusia. Mostly, there is
a loss of specific richness and a restricted availability of suitable habitats
in the higher altitude areas. In general, the PAs located in mountainous
areas maintain the best conditions for the survival of the taxa considered
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in the proposed CC scenarios. However, and especially for mammals, the
results suggest that alternative forms and formats of conservation should be
considered.

Global warming and society’s growing ecological footprint are making a
dynamic approach to conservation increasingly useful and necessary. In re-
cent decades, the interaction between science and policy has been strength-
ening and should remain iterative: policy defines the need for scientific in-
formation and the resulting science determines future policy. To maintain
this interaction, scientists must provide knowledge and tools oriented to the
conservation of ecological processes and genetic resources that must be sup-
ported by alternative protection policies that actively involve society (private
conservation areas, stewardship mechanisms) and consider the sustainability,
resilience and potential for change of the biophysical environment (dynamic
conservation in situ).
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Appendix A. Variable description

Table A.1: Description of variables considered in the experiments. All the variables are
measured at the 100 Km2 grid scale.

Name Description

S
p

ec
ie

s
ri

ch
n

es
s
∗

Amphibian Number of species of amphibians present in
each cell

Reptile Number of species of reptiles present in each
cell

Mammal Number of species of mammals present in
each cell

Bird Number of species of birds present in each cell

C
li

m
at

e
?

Mean temperature (T) Average of the annual mean temperature (◦C)
over the period 1961–2000
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Table A.1: Description of variables considered in the experiments. All the variables are
measured at the 100 Km2 grid scale.

Name Description

Maximum temperature
of hottest month
(Tmaxh)

Maximum temperature of the averages of the
maximum monthly temperatures (◦C) over
the period 1961–2000

Minimum temperature
of coldest month
(Tminc)

Minimum temperature of the averages of the
minimum monthly temperatures (◦C) over
the period 1961–2000

Precipitation (PPT) Average of the annual total rainfall (mm)
over the period 1961–2000

Evapotranspiration
(ET0)

Average of the annual evapotranspiration of
reference (mm) over the period 1961–2000

Water deficit amount Annual sum of the negative differences
between PPT and ET0

Water surplus amount Annual sum of the positive differences
between PPT and ET0

Water Balance Average of water balance (mm) over the
period 1961–2000

Snow Average of annual precipitation as snow (mm)
over the period 1961–2000

Radiation Average of annual solar radiation (Joule/m2)
over the period 1961–2000

Availability of Time for
Primary Production
(ATPP)

Average (over the period 1961–2000) of time
(hours/year) in which the following conditions
are met: solar lighting, temperature above
7.5◦ and positive water balance

Aridity index (AI) Ratio of ET0 to PPT, computed as ET0
PPT ×100

T
op

o
†

Elevation (Z) Average elevation (m a.s.l.) of each cell in the
grid

Slope (S) Average slope (◦) of each cell in the grid

L
an

d
-u

se
‡

Urban areas Percentage of cell covered by urban areas,
parks, recreational and sport facilities and
areas under construction

Industrial areas Percentage of cell covered by industrial areas
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Table A.1: Description of variables considered in the experiments. All the variables are
measured at the 100 Km2 grid scale.

Name Description

Mining Percentage of occupation of mining deposits
in a cell

Infrastructures Percentage of cell covered by technical and
communication infrastructure

Herbaceous crops Percentage of cell covered by herbaceous
crops, including greenhouses

Olive groves Percentage of cell covered by olive
monocultures

Vineyards Percentage of cell covered by monocultures
devoted to grape production

Fruit trees Percentage of cell covered by monocultures
devoted to fruit production

Woody crops Percentage of cell covered by combinations of
different woody crops

Crops and natural
vegetation

Percentage of cell covered by combinations of
different herbaceous crops and oak trees

Grassland Percentage of cell covered by grassland

Bush Percentage of cell covered by bush

Oaks Percentage of cell covered by trees within the
genus Quercus

Conifers Percentage of cell covered by trees within the
class Pinopsida

Eucalypts Percentage of cell covered by trees within the
genus Eucalyptus

Other hardwood forest Percentage of cell covered by hardwood forest
not listed above

Mixed forest Percentage of cell covered by combinations of
hardwood forest plants

Bush and forest Percentage of cell covered by combinations of
bush and forest

Grassland and forest Percentage of cell covered by combinations of
grassland and forest
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Table A.1: Description of variables considered in the experiments. All the variables are
measured at the 100 Km2 grid scale.

Name Description

Areas without
vegetation

Percentage of cell covered by burnt areas,
naked soil, deforested areas, plowed land and
firebreaks

Sand Percentage of cell covered by beaches, dunes,
cliffs and sandy areas

Industrial wetlands Percentage of cell covered by salt evaporation
ponds and fish farms

Artificial freshwaters Percentage of cell covered by reservoirs,
irrigation ponds and other artificial
freshwaters

Natural freshwater
wetlands

Percentage of cell covered by lakes, boglands,
glaciers and snowfields

Natural brackish
wetlands

Percentage of cell covered by coastal marshes,
estuaries and coastal lagoons

Rivers Percentage of cell covered by rivers

O
th

er

Pielou’s evenness index
(J)

Evenness of the 26 land-uses described above.
This index reflects how many different
land-uses are present in each cell and how
even their relative abundances are. The J
index in defined as J = H

Hmax
, where H is the

Shannon index, defined as H = −
n∑

i=1

pi ln pi,

where pi is the proportion of the i-th land-use
and n is the total number of land uses; and
Hmax is the value H obtained when all the
land-uses are equally frequent in a cell, i.e.,
Hmax = lnn. The J index ranges from 0 (the
entire cell is covered by 1 land-use only) to 1
(the cell is covered by all the land-uses and
their relative abundances are equal)

Protected area (PA) Percentage of cell protected by the Natura
2000 network.

Roads Number of roads per cell

Distance to freshwater
(DFW)

Distance (m) from the center of the cell to the
nearest body of freshwater
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Table A.1: Description of variables considered in the experiments. All the variables are
measured at the 100 Km2 grid scale.

Name Description

Distance to urban area
(DUA)

Distance (m) from the center of the cell to the
nearest urban area (i.e., a municipality with
more than 50000 inhabitants)

∗ Computed from presence-only data, obtained from the Spanish Inventory of Terrestrial Species,

which is constantly revised and updated. In this work, the used dataset is updated to 2013,

with roughly only 1% of the presences recorded being observed before year 2000.

? Information obtained from the Environmental Information Network of Andalusia (REDIAM).

† Topography. Computed from the Andalusian Digital Terrain Model with a spatial resolution

of 200 meters, provided by the Spanish National Geographic Institute.

‡ Computed from the Andalusian Land Use and Vegetation Cover Map of 2013 (at scale 1:10000),

provided by the Andalusian Environmental Information Network.

Table A.2: Variables included (X) in each partition of the model (M1: Baetic Depression
and Sierra Morena, M2: Mountain ranges and M3: East). Red cells indicate that the
linear correlation between a variable a the species richness is negative, while green ones
indicate a positive linear correlation. Each sub-model’s RMSE is shown in parenthesis.

Amphibians Reptiles Mammals Birds

Variable M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

(3.5) (1.5) (1.4) (4.2) (5.9) (4.9) (5.6) (8.3) (9.2) (16.8) (11.7) (24.7)

T X X X X X X X X X X X X

Tmaxh X X X X X X X X X X X X

Tminc X X X X X X X X X X X X

PPT X X X X X X X X X X X X

ET0 X X X X X X X X X X X X

Water deficit
amount

X X X X X X X X X X X X

Water surplus
amount

X X X X X X X X X X X X

Water balance X X X X X X X X X X X X
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Table A.2: Variables included (X) in each partition of the model (M1: Baetic Depression
and Sierra Morena, M2: Mountain ranges and M3: East). Red cells indicate that the
linear correlation between a variable a the species richness is negative, while green ones
indicate a positive linear correlation. Each sub-model’s RMSE is shown in parenthesis.

Amphibians Reptiles Mammals Birds

Variable M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

(3.5) (1.5) (1.4) (4.2) (5.9) (4.9) (5.6) (8.3) (9.2) (16.8) (11.7) (24.7)

Snow X X X X X X X X X X X X

Radiation X X X X X X X X X X X X

ATPP X X X X X X X X X X X X

AI X X X X X X X X X X X X

Z X X X

S X X

Urban areas X X X X X X X X

Industrial areas X X

Mining X X X X

Infrastructures X X X

Herbaceous
crops

X

Olive groves X X X

Vineyards X X X X

Fruit trees X X X X X X

Woody crops X X X

Crops and
natural
vegetation

X X X

Grassland X

Bush

Oaks X

Conifers X X

40



Table A.2: Variables included (X) in each partition of the model (M1: Baetic Depression
and Sierra Morena, M2: Mountain ranges and M3: East). Red cells indicate that the
linear correlation between a variable a the species richness is negative, while green ones
indicate a positive linear correlation. Each sub-model’s RMSE is shown in parenthesis.

Amphibians Reptiles Mammals Birds

Variable M1 M2 M3 M1 M2 M3 M1 M2 M3 M1 M2 M3

(3.5) (1.5) (1.4) (4.2) (5.9) (4.9) (5.6) (8.3) (9.2) (16.8) (11.7) (24.7)

Eucalypts X X X

Other hardwood
forest

X X X X

Mixed forest X

Bush and forest

Grassland and
forest

X X X X X X

Areas without
vegetation

X X X X X X

Sand X X X X X X X

Industrial
wetlands

X X X X X X

Artificial
freshwaters

X X X X

Natural
freshwater
wetlands

X X X

Natural
brackish
wetlands

X X X X X X

Rivers X X X X

J X X X X X X

PA X X X

Roads X X X X X X X X

DFW X X

DUA X X X
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Alagador, D., Cerdeira, J.O., Araújo, M.B., 2014. Shifting protected ar-
eas: scheduling spatial priorities under climate change. Journal of applied
ecology 51, 703–713.

Ames, D.P., Neilson, B.T., Stevens, D.K., Lall, U., 2005. Using Bayesian net-
works to model watershed management decisions: an East Canyon Creek
case study. Journal of Hydroinformatics 7, 267 – 282.

Aragón, P., Rodŕıguez, M., Olalla-Tárraga, M., Lobo, J., 2010. Predicted
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